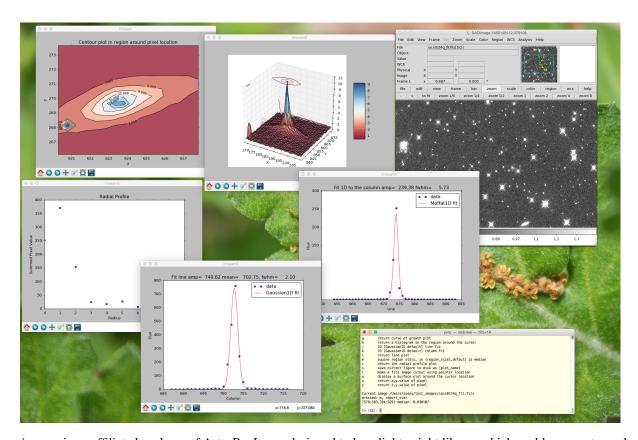
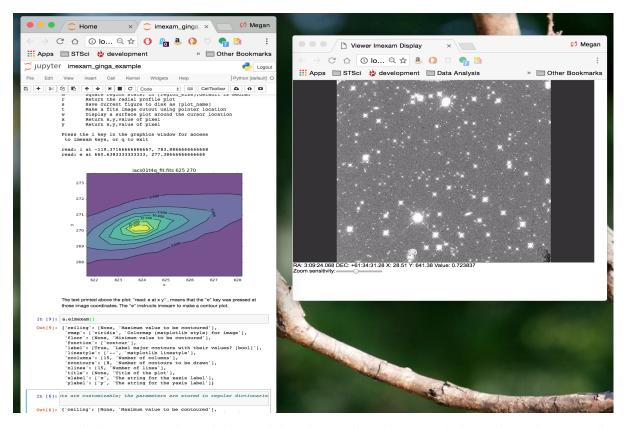


imexam Documentation


Release 0.8.0

Megan Sosey

Contents


Ι	Requirements	3
II	How to Install	7
III	Usage	11
IV	Common Problems	17
V	User documentation	21
1	The imexam() method	23
2	imexam User Methods	47
3	Convenience functions for DS9's (XPA) commands	57
4	Example 1	63
5	Example 2	67
6	Example 3	75
7	Example 4	83
8	Example 5	85
9	Software Dependencies	93
10	IRAF imexamine capabilities	95
11	Comparison with the IRAF verison of imexamine	99

VI Reporting Issues	113
VII Contributing	117
VIII Reference API	121
12 imexam.connect Module	123
13 imexam.imexamine Module	131
14 imexam.ds9_viewer Module	
15 imexam.ginga_viewer Module	155
Python Module Index	163

imexam is an affiliated package of AstroPy. It was designed to be a lightweight library which enables users to explore data using common methods which are consistant across viewers. It can be used from a command line interface, through a Jupyter notebook or through a Jupyter console. It can be used with multiple viewers, such as DS9 or Ginga, or without a viewer as a simple library to make plots and grab quick photometry information. The above image is an example desktop interfacing with DS9. Below, is another example desktop using the Jupyter notebook and the Ginga HTML5 viewer.

Contents 1

The power of this python tool is that it is essentially a library of plotting and analysis routines which can be directed towards any viewer. It attempts to standardize the interface into these functions so that no matter what viewer is in use the calls and results are the same. It can also be used without connecting to any viewer since the calls take only data and location information. This means that given a data array and a list of x,y positions you can create plots and return information without having to interact with the viewers, just by calling the functions directly either from a shell or a private script.

imexam may be used as a replacement for the IRAF imexamine task. You should be able to perform all of the most used functions that imexamine provided in IRAF, but you also gain the flexibility of python and the ability to add your own analysis functions.

2 Contents

Part I Requirements

This package can be used on Windows, Linux, and MacOS operating systems.

Windows users may download the git repository or do a direct pip install from the git repository. However, they will not have default access to DS9 because compiling the cython+xpa code cannot currently be done with default installed software. Instead, Windows users should make sure they install the Ginga viewer for image examination and plotting using it's HTML5 viewer. You will have all the same imexam functionality available to you, including the use of Jupyter notebooks and screen plotting.

imexam currently provides display support two viewers: DS9 and Ginga. The default, when no parameters are supplied to the connect call, is for imexam to start up it's own DS9 process and shut it down nicely upon exit. A Ginga widget using an HTML5 backend is also available as a viewer, most usefull when interacting with the package inside a Jupyter notebook. The package is designed so that it may easily accept other display devices in the future. Additionally, an experimental ginga plugin is available which allows use of the basic ginga gui and interaction with the image display and plots in the imexam style.

The imexam library can be used standalone, without a viewer, to create the plots which are available in the interactive sessions by importing the plotting object and feeding the functions your data with x,y coordinates for the plots. It can also be used within the Jupyter notebook framework with either DS9 or the HTML5 backend for viewing. In either case, the images and plots may be saved inside the notebook in conjunction with the notebook (nbAgg) matplotlib backend. If you choose to interact with separate plotting windows, it's still possible to grab an image of the current image display or plot and save it inside the notebook.

Note: For DS9, it is important to know if you have XPANS installed on your machine and available through your PATH if you plan to use the nameserver functionality. XPANS is the XPA Name Server, it keeps track of all the open socket connections for DS9 and provides a reference for their names. If you DO NOT have XPANS installed, then imexam will still work, but you should either start the DS9 window after importing imexam through the imexam.connect() interface, OR after you start DS9 from the shell.

You can connect to an already open DS9 window by specifying the title or the XPA_METHOD. The XPA_METHOD is the address in the File->Information dialog. If users don't specify a title in the ds9 window when they open one up, ds9 will just call the window "ds9", so you can end up with multiple windows with the same name. This works for DS9 because the XPA_METHOD is always unique. The most straightforward way is for users to open the DS9 windows with explicit titles, and then tell imexam to connect to that window:

```
python> !ds9 -title megan
python> window=imexam.connect('megan')
```

However, if there are windows already open with no unique titles, the best way is to connect using the method. The list_active_ds9 function can be used to return a dictionary which contains the information for all the windows, but it's keys are the unique XPA_METHOD strings.:

```
In [3]: !ds9&
In [4]: imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61894 sosey
Out[4]: {'c0a80106:61894': ('ds9', 'sosey', 'DS9', 'gs')}
```

Using this dictionary, you can also you can return the list of windows you can connect to without too much thinking, making it easy to encorporate into your own scripts as well::

```
In [1]: import imexam
In [2]: windows=imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61915 sosey
In [3]: list(windows)
Out[3]: ['c0a80106:61915']
In [4]: !ds9&
```

```
In [5]: windows=imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61915 sosey
DS9 ds9 gs c0a80106:61923 sosey
In [6]: list(windows)
Out[6]: ['c0a80106:61915', 'c0a80106:61923']
In [7]: ds9=imexam.connect(list(windows)[0])
```

But you can also use it as below to cycle through connecting to a set of windows::

```
In [8]: windows=imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61915 sosey
DS9 ds9 gs c0a80106:61923 sosey
In [9]: ds=imexam.connect(windows.popitem()[0]) #connect to first window, remove as possible window
In [10]: windows
Out[11]: {'c0a80106:61923': ('ds9', 'sosey', 'DS9', 'gs')}
In [12]: w2=imexam.connect(windows.popitem()[0])
In [13]: windows
Out[31]: {}
```

In order to use the Ginga widget display you must have Ginga installed. More information about Ginga can be found in its package documentation: http://ginga.readthedocs.org/en/latest/. If you are using Python 3 you should also install Pillow which will aid in the image display. The Ginga documentation will tell you of any of it's other dependencies. If you install Ginga you will have access to another display tool for your images and data, the HTML5 widget. You can find the source code on GitHub, but you can also install it with pip or conda.

You can access this help file on your locally installed copy of the package by using the imexam.display_help() call after import. This will display the help in your web browser.

Note: All information returned from this module should be considered an estimate of an actual refined result, more precise analysis of the data should be performed for verification before publication.

Part II How to Install

These are some tips on installing the package, or tracking down problems you might be having during or after installation.

imexam can be installed from the source code in the normal python fashion after downloading it from the git repo:

```
python setup.py install
```

imexam can also be installed using pip or conda, and is included in the Astroconda distribution from STScI:

```
# from PyPI
pip install imexam

# if you already have an older version installed
pip install --upgrade imexam

# from the master trunk on the repository, considered developmental code
pip install git+https://github.com/spacetelescope/imexam.git

#install version 0.6.3 from the git repository, this uses the git tag reference
pip install git+https://github.com/spacetelescope/imexam.git@v@.6.3#egg=imexam

# from the STScI conda release package
conda install imexam -c http://ssb.stsci.edu/astroconda
```

If you want to have access to the photometry features of the imexam() analysis, download and install photutils - another of the astropy associated packages. The full list of astropy packages can be found here: https://github.com/astropy. If photutils is not installed, imexam should issue a nice statement saying that the photometry options are not available upon import, and any time an analysis key is pressed during the imexam() function loop which requires photutils to render a result.

Part III

Usage

imexam displays plots using matplotlib, if you find that no windows are popping up after installation it's probably the backend that was loaded. One quick way to get things started is to load ipython and use the %matplotlib magic, this will make sure the proper display backend loads when matplotlib is imported:

```
>ipython
>%matplotlib
>import imexam
```

Matplotlib magic should also be used inside the Jupyter notebook or proper interaction with the plots. Before importing imexam into the notebook, specify the notebook backend if you wish to save your plots into the notebook itself. Otherwise you can use the standard ipython magics.

imexam is a class based library. The user creates an object which is tied to a specific image viewing window, such as a DS9 window. In order to interact with multiple windows the user must create multiple objects. Each object stores all the relevent information about the window and data with which it is associated.

For example, in order to open a new DS9 window and use the object "viewer" to control it, you would issue the command:

```
viewer=imexam.connect()
```

The "viewer" object now has associated methods to view, manipulate and analyze data in the DS9 session. When you start the connection, you also have the option of specifying a currently open DS9 window using the target keyword. This keyword can contain the name, the actual text name that you gave the window, or the address of the window. The address of the window can be found in the File->XPA->Information menu item, is stored as XPA_METHOD, and is of the form "82a7e75f:58576" for INET sockets, and a file path for local sockets. The following is an example of connecting to an already active DS9 window which was started outside of imexam:

```
viewer=imexam.connect("82a7e75f:58576")

or
viewer=imexam.connect("my_window_title")
```

When imexam starts up a DS9 window itself, it will create an inet socket by default. However, imexam will first check to see if XPA_METHOD was set in your environment and default to that option. If you are experiencing problems, or you don't have an internet connection (the two might be related because the XPA structures INET sockets with an ip address), you can set your environment variable XPA_METHOD to local or localhost. This will cause imexam to start a local(unix) socket which will show an XPA_METHOD that is a filename on your computer. imexam defaults to a local socket connection to allow for users who do not have the XPA installed on their machine or available on their PATH.

The full XPA source code is maintained as a submodule to the imexam package. If you don't have the XPA on your path, simply point it to that location, or copy the xpans executable to the location of your choice, and make sure you update your PATH. Any time DS9 is started it will start up the xpa nameserver automatically. Then all the xpans query options will be available through imexam (such as imexam.list_active_ds9()). imexam itself uses Cython wrappers around the get and set methods from the XPA for it's communication which is why the fully installed XPA is not necessary.

If you wish to open multiple DS9 windows outside of imexam, then it's recommended that you give each a unique name. If you've forgotten which window had which name, you can look in the same XPA info menu and use the XPA_NAME specified there. If you haven't given them a unique name, you can list the available windows using imexam.list_active_ds9() (as long as XPANS is running) and specify their unique address.

imexam will attempt to find the current location of the DS9 executable by default, but you may also supply the path to the DS9 executable of your choice using the path keyword when you call connect. The fully optional calling sequence is:

```
imexam.connect(target="",path=None,viewer="ds9",wait_time=10)

Where target is the name of the ds9 window that is already running, path is the location of the ds9_
→executable, viewer is the name of the viewer to use (ds9 is the only one which is currently_
→activated), and wait_time is the time to wait to establish a connection to the socket before exiting_
→the process.
```

If it seems like the ds9 window is opening or hanging, there could be few things going on:

- imexam will default to an inet socket connection for the XPA. However, it will first check your environment variable XPA_METHOD and preferably use that instead. If you don't have an internet connection, check this environment variable, and set it to "local".
- If things seem in order, it's possible that your machine is waiting for X11 to start up, give it time to start, or when you call imexam increase the wait time sufficiently; you can do this by specifying "wait_time=60" when you open your viewing object with connect(). The 60 here is an example of the number of seconds imexam should wait before returning a connection error.
- Next, check that the path to the DS9 executable is somewhere on your path and that it has not been aliased to something else. You can check this from any terminal window by trying to start DS9. You can also use the unix "which ds9" command to return the full path to the executable, as well as "ls -al ds9" to return the full path and any soft links which might have been established.

In order to return a list of the current DS9 windows that are running, issue the command:

```
imexam.list_active_ds9()
```

Note: More information on DS9 can be found at: http://ds9.si.edu/site/Home.html

If you are using the Ginga widget, the interaction with the imexam code stays the same, you simply specify that you would like to use Ginga in the call to connect:

```
viewer=imexam.connect(viewer='ginga')
```

"ginga" tells imexam that you'd like to use the Ginga widget with the HTML5 background.

In order to turn logging to a file on, issue the command: window.setlog(). The log will be saved to the default filename imexam_session.log in the current directory unless you give it another filename to use. Here's an example of how that might work:

```
import imexam
window=imexam.connect('ds9')
window.setlog() <-- turns on logging with default filename
window.imexam() <-- all output will be logged to the file and displayed on the screen
window.setlog(on=False) <-- turns off logging to file
window.setlog(filename='my_other_log.txt') <-- turns on logging and sets the save filename</pre>
```

The log will look something like this, you can see it contains a mention of the command used along with the results

```
gauss_center
xc=812.984250 yc=706.562612

aper_phot
x y radius flux mag(zpt=25.00) sky fwhm

812.98 706.56 5 1288669.29 9.72 11414.53 4.83

show_xy_coords

813.5 706.625
```

```
gauss_center
xc=812.984250 yc=706.562612

gauss_center
xc=239.856464 yc=233.444783

aper_phot
x y radius flux mag(zpt=25.00) sky fwhm
239.86 233.44 5 126601.26 12.24 11574.32 -12.67

show_xy_coords
253.0 234.75

gauss_center
xc=239.856464 yc=233.444783
```

More detailed examples can be found in the examples section of this documentation.

Part IV Common Problems

You're getting the following error statement when you try to connect() to a DS9 window, or display an image:

```
XpaException: Unknown XPA Error : XPAGet returned 0!
```

You can first try using local unix sockets by setting your environment variable XPA_METHOD to local:

```
setenv XPA_METHOD local #csh
```

or if you have a bash-like shell:

```
export XPA_METHOD="local"
```

or if you want to do it from inside Python:

```
import os
os.environ['XPA_METHOD'] = "local"
```

That will create local unix file sockets for communication with ds9. If that doesn't solve the problem, see if your path includes the location of xpans, the XPA name server. If you have it installed, but it's not on your path, put it there.

Alternatively, if you're getting an error on calling connect() along the lines of:

```
Connection timeout with the ds9
```

you may want to force XPA to use the "inet" mode, which is the default unless your XPA_METHOD is set. E.g.,

```
setenv XPA_METHOD inet #csh
export XPA_METHOD='inet' #bash
```

(Or similar based on the examples above)

If you are having display issues, some build problems may exist with the dependency packages which deal with backend graphics, try setting your matplotlib backend to "Qt4Agg". You can set this in your .matplotlib/matplotlibrc file

```
backend: Qt4Agg
```

The package works with the Qt5Agg and notebook backends, but on occasion I've seen the matplotlib window take two cycles to update, especially inside the Jupyter notebook with inline plots, meaning you may have to hit the exam key twice for the plot to appear. This issue still needs to be worked out, if you're running into it try using the Qt4Agg backend or plotting outside the notebook and saving the figures through the imexam grab or save calls.

If you get an error about not finding the file "import" when you use the grab() function to save a copy of the DS9 window.

```
`FileNotFoundError: [Errno 2] No such file or directory: 'import' `
```

"import" is the unix/linux import command, it saves any visible window on an X server and outputs it as an image file, it's included with many macos and linux installations, it's likely not on windows. Users should check their path to see if it's included. This only affects grab() for DS9 which saves a copy of the DS9 window on the workspace, it does not affect saves for ginga or matplotlib plots.

imexam switched to using import to get around a bug in the XPA for the saveimage call to the XPA. The DS9 saveimage function basically does a screen capture. In the case of MacOSX (and XQuartz) when you are configured to be rootless, the screen capture fails if your DS9 window is not in the upper left corner of the primary screen - the call should work if you are using a laptop that is not connected to a larger display, or a workstation with only one monitor. Since these are harder things to automatically grab from user environments, the workaround was to 'Print' to a file, generating a postscript image that can be rendered outside of ds9 (for example /Applications/Preview). However, I

was unable to get this to save to file, the functions it insisted on sending the image directly to the printer. This also makes for greater unknowns on user machines. The workarounds for users who hit this may be:

- screen grab a copy of the window yourself (grabbing saves any overlays as well)
- move the DS9 window to the appropriate screen and issue the saveimage command, assuming "a" is your control object, that would look like: a.window.xpa.set("saveimage ds9.jpeg")

If you are experiencing an issue not related to those descibed above you can open a new issue on the imexam GitHub issue tracker. You can view older closed issues there as well.

Part V User documentation

CHAPTER 1

The imexam() method

This is the main method which allows live interaction with the image display when you are viewing your image or data array. If you execute imexam() while using the Ginga widget, it will display the available options, however they are always available for use via keystroke and are event-driven (using the same keys described below). In order to turn the key-press capture on and off while you have your mouse in the Ginga widget press the "i" key. Either the "i" or "q" key can be used to quit out of the examination mode.

imexam ():

access realtime imexamine functions through the keyboard and mouse

Current recognized keys available during imexam are:

Make the next plot in a new window Aperture sum, with radius region_size Return the 2D gauss fit center of the object Return column plot Return a contour plot in a region around the cursor Return curve of growth plot Return a histogram in the region around the cursor 1D [Gaussian1D default] line fit 1D [Gaussian1D default] column fit Return line plot Square region stats, in [region_size], default is median Return the radial profile plot Save current figure to disk as [plot_name] Make a fits image cutout using pointer location Display a surface plot around the cursor location Return x,y,value of pixel Return x,y,value of pixel aimexam(): return a dict of current parameters for aperture photometery cimexam(): return dict of current parameters for column plots eimexam(): return dict of current parameters for contour plots

```
himexam(): return dict current parameters for histogram plots

jimexam(): return dict current parameters for 1D line plots

kimexam(): return dict of current parameters for 1D column plots

limexam(): return dict of current parameters for line plots

gimexam(): return dict of current parameters for curve of growth plots

rimexam(): return the dict of current parameters for radial profile plots

wimexam(): return dict of current parameters for surface plots

mimexam(): return dict of current parameters for area statistics

timexam(): return a dict of the current parameters for image cutouts
```

Note: Some of the plots accept a marker type, any valid Matplotlib marker may be specified. See this page for the full list: http://matplotlib.org/api/markers_api.html#module-matplotlib.markers

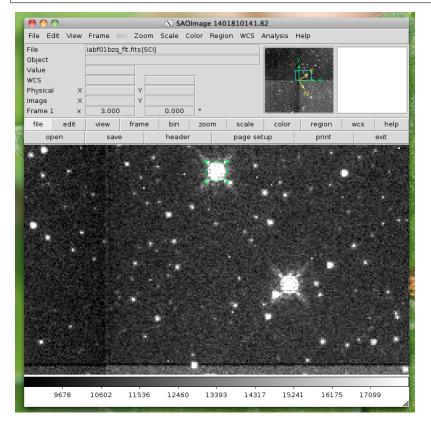
The imexam key dictionary is stored inside the user object as <object_name>.exam.imexam_option_funcs{}. Each key in the dictionary is the keyboard key to recognize from the user, it's associated value is a tuple which contains the name of the function to call and a description of what that function does. "q" is always assumed to be the returned key when the user wishes to quit interaction with the window. Users may change the default settings for each of the imexamine recognized keys by editing the associated dictionary. You can edit it directly, by accessing each of the values by their keyname and then reset mydict to values you prefer. You can also create a new dictionary of function which maps to your own

However, you can access the same dictionary and customize the plotting parameters using set_plot_pars. In the following example, I'm setting three of the parameters for the contour map, whose imexam key is "e":

```
#customize the plotting parameters (or any function in the imexam loop)
a.set_plot_pars('e','title','This is my favorite galaxy')
a.set_plot_pars('e','ncontours',4)
a.set_plot_pars('e','cmap','YlOrRd') #see http://matplotlib.org/users/colormaps.html
```

where the full dictionary of available values can be found using the eimexam() function described above.:

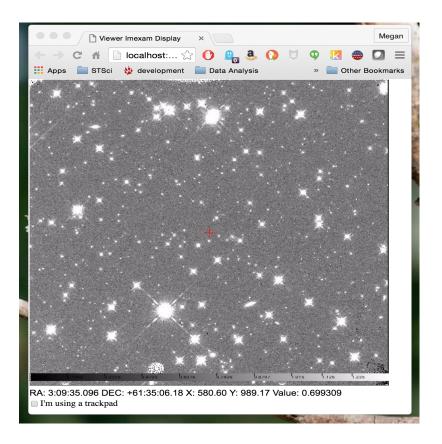
```
In [1]: a.eimexam()
Out[2]:
{'ceiling': [None, 'Maximum value to be contoured'],
   'cmap': ['RdBu', 'Colormap (matplotlib style) for image'],
   'floor': [None, 'Minimum value to be contoured'],
   'function': ['contour'],
   'label': [True, 'Label major contours with their values? [bool]'],
   'linestyle': ['--', 'matplotlib linestyle'],
   'ncolumns': [15, 'Number of columns'],
   'ncontours': [8, 'Number of contours to be drawn'],
   'nlines': [15, 'Number of lines'],
   'title': [None, 'Title of the plot'],
   'xlabel': ['x', 'The string for the xaxis label'],
   'ylabel': ['y', 'The string for the yaxis label']}
```


Users may also add their own imexam keys and associated functions by registering them with the register(user_funct=dict()) method. The new binding will be added to the dictionary of imexamine functions as long as the key is unique. The new functions do not have to have default dictionaries association with them, but users are free

to create them.

For all the examples below I will use a session similar to the following example:

```
#This will default to DS9 for the viewer


import imexam
viewer=imexam.connect()
viewer.load_fits('iabf01bzq_flt.fits')
viewer.scale()
viewer.panto_image(576,633)
viewer.zoom(3)
```


This will use Ginga (instead of the default DS9) for the viewer:

```
#Use Ginga for the image viewer, make sure it is installed

import imexam
viewer=imexam.connect(viewer='ginga')
viewer.load_fits('iabf01bzq_flt.fits')
viewer.scale()
viewer.panto_image(576,633)
viewer.zoom(3)
```


1.1 Circular Apterture Photometry

Aperture photometry is performed when you press the "a" key. It is implemented using the photutils python package, an affiliated package of astropy that is still in development.

Currently, the calculation which is performed is similar to the "," or "a" IRAF imexamine keys. It is circular aperture photometry, centered on the mouse location at the time the key is pressed, with a background annulus subtraction for the sky. The radius of the aperture is set with the region_size keyword (default to 5 pixels). The annulus size is also set to the width, and taken a distance of skyrad pixels from the center. The pixels used to calculate the enclosed flux are those whose centers fall inside the radius distance, in the same way that IRAF imexamine computes the flux.

These are the default parameters for aperture photometry. They live in a dictionary in the exam object:

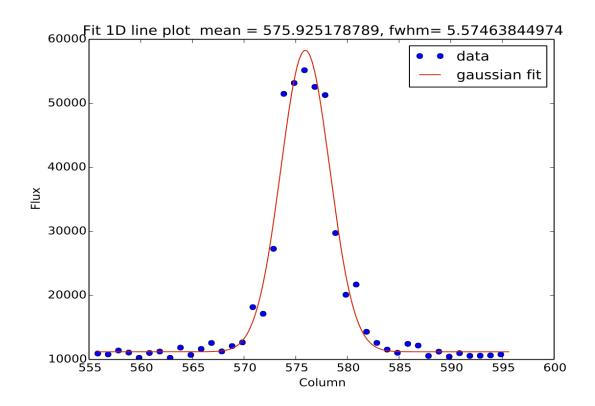
```
'function': ['aper_phot'],
    'radius': [5, 'Radius of aperture for star flux'],
    'skyrad': [15, 'Distance to start sky annulus is pixels'],
    'subsky': [True, 'Subtract a sky background?'],
    'width': [5, 'Width of sky annulus in pixels'],
    'zmag': [25.0, 'zeropoint for the magnitude calculation']}
```

In order to change the width of the photometry aperture around the object you would do this::

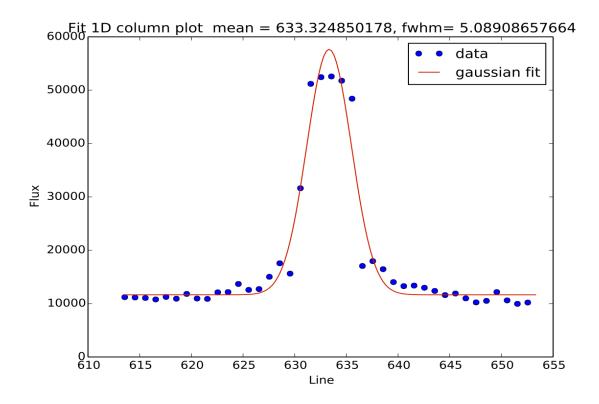
```
viewer.set_plot_pars('a',"radius",10)
```

This is what the return looks like when you do photometry, where I've asked for photometry from the star above:

xc = xcenter, yc=ycenter; these were found using a Gaussian2D fit centered on the pixel location of the mouse. You can turn the fit off by setting the "center" parameter to "False".


1.2 Gaussian1D, Moffat1D, MexicanHat1D profiles

If you press the "j" or "k" keys, a 1D profile is fit to the data in either the line or column of the current pointer location. An option to use a Polynomial1D fit is also available, although not something of use for looking at stellar profiles. A plot of both the data and the fit + parameters is displayed. If the centering option is True, then the center of the flux is computed by fitting a 2d Gaussian to the data.


The column fit parameters are similar:

```
"pointmode":[True,"plot points instead of lines? [bool]"],
   "logx":[False,"log scale x-axis?"],
   "logy":[False,"log scale y-axis?"],
   "center":[True,"Recenter around the local max"],
}
```

This is the resulting line fit:

and the corresponding column fit:

1.3 Square region statistics

If you press the "m" key, the pixel values around the pointer location are calculated inside a box which has a side equal to the region_size, defaulted to 5 pixels, and using the statistical function chosen.

The user can map the function to any reasonable numpy function, it's set to numpy.median by default:

You can change the statistic reported by changing the "stat" parameter:

```
viewer.set_plot_pars('m',"stat","max")
[572:577,629:634] amax: 55271.000000
```

You can make a quick comparison of the max reported above with the line fit graph in the 1D gaussian profile example.

You can also choose to use the scipy.stats.describe function if you have scipy installed by changing the stat to "describe"; this will report the combined stats for the region::

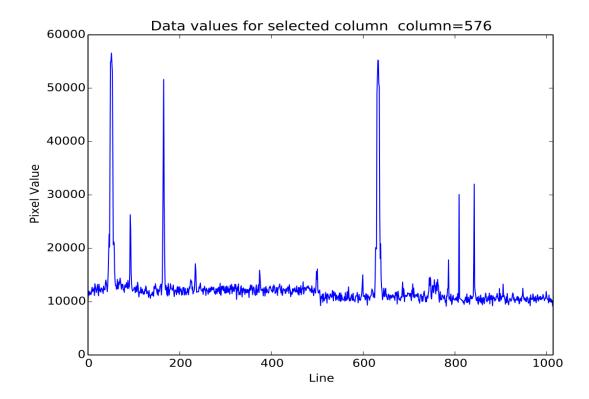
```
pressed: m, report_stat
[551:556,653:658] describe:
```

nobs: 25

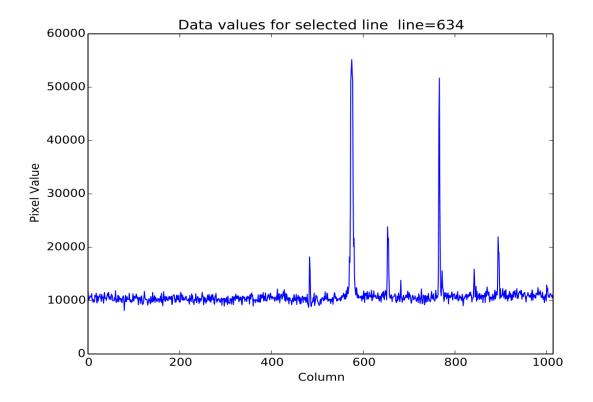
minamx: (0.51326549, 0.85604763)

mean 0.6851165890693665 variance: 0.00780616095289588 skew: 0.05719175934791565 kurtosis: -0.47930471400886976

1.4 Pixel Coordinates and Value


Hitting the 'x' or 'y' will return the x,y coordinate and pixel value under the mouse pointer.:

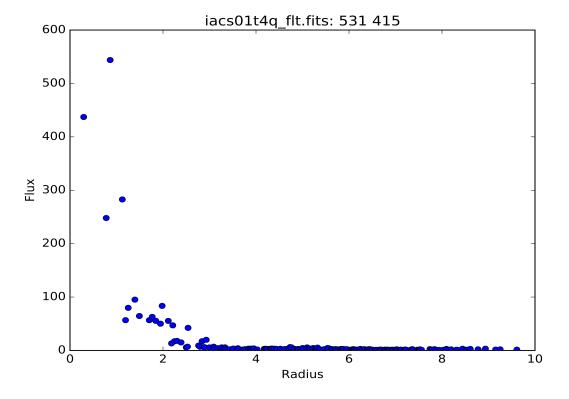
```
576.0 633.66667 55271.0
```


When not inside the imexam() loop, you can also set the location of the pointer using the wcs or pixel location you wish to view.

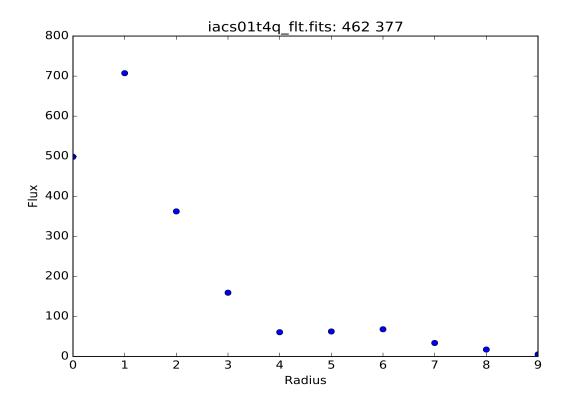
1.5 Line or Column plots

Pressing the "l" or "c" keys will display a plot of the points through either the line or column closest to the cursor location.

31

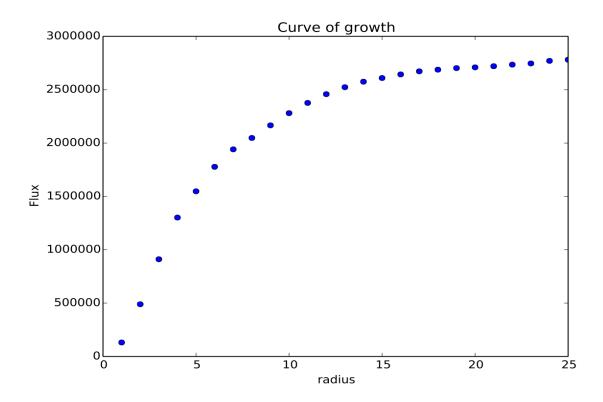

1.6 Radial Profile Plot

Pressing the "r" key displays a radial profile plot for the flux around the current pointer location. If centering is on, the center is computed close to the star using a Gaussian2D fit. The default plot uses every pixel


The available parameters are

```
radial_profile_pars = {"function": ["radial_profile_plot", ],
            "title": ["Radial Profile", "Title of the plot"],
            "xlabel": ["Radius", "The string for the xaxis label"],
            "ylabel": ["Summed Pixel Value", "The string for the yaxis label"],
            'pixels': [True, 'Plot all pixels at each radius? (False bins the data)']
            "fitplot": [False, "Overplot profile fit?"],
            "fittype":["Gaussian1D", "Profile type to fit (gaussian)"],
            "center": [True, "Solve for center using 2d Gaussian? [bool]"],
            "background": [True, "Subtract background? [bool]"],
            "skyrad": [10., "Background inner radius in pixels, from center of object"],
            "width": [5., "Background annulus width in pixels"],
            "magzero": [25., "magnitude zero point"],
            "rplot": [8., "Plotting radius in pixels"],
            "pointmode": [True, "plot points instead of lines? [bool]"],
            "marker": ["o", "The marker character to use, matplotlib style"],
            "minflux": [0., "only measure flux above this value"],
            "getdata": [True, "return the plotted data values"]
            }
```

Radial profile plot for all pixels around the location:


Radial profile plot for all pixels, binned to integer radii:

1.7 Curve of Growth plot

Pressing the "r" key displays a curve of growth for the flux around the current pointer location in successively larger radii. If centering is on, the center is computed close to the star using a 2d gaussian fit.

The available parameters are

Returned to the screen is the data information from the plot, the (x,y) location of the center, followed by the radius and corresponding flux which was measured:

```
viewer.set_plot_pars('g',"rplot",25) #set the default radius larger
xc=577.242311  yc=634.578361
```

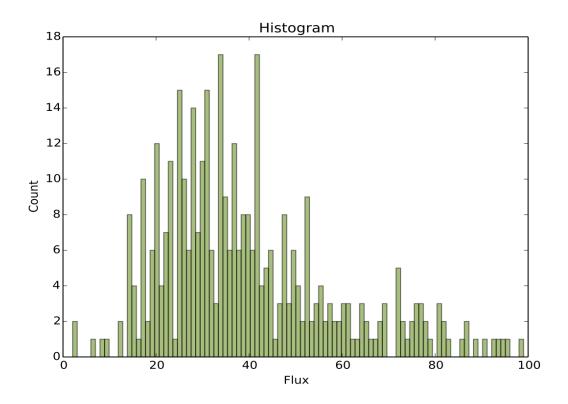
```
at (x,y)=577,634

radii:[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]

flux:[131192.03694247041, 489485.48536408512, 911376.50226695999, 1301726.7189847208, 1547865.

→8684735354, 1777547.7859571185, 1940955.1267221647, 2047700.7156964755, 2165971.1952809561, 2280391.

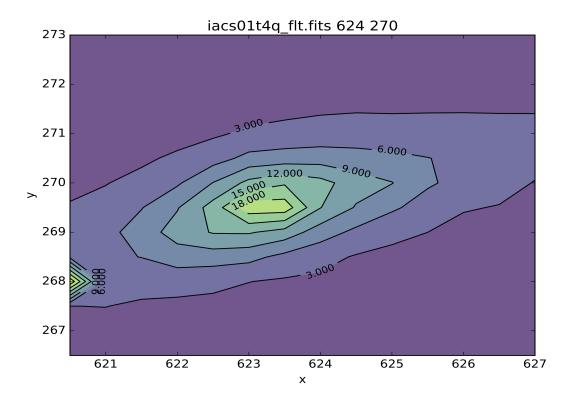
→5901085823, 2376090.3555588746, 2458370.0006153183, 2523384.2243051622, 2575208.3657517368, 2609309.


→6524876151, 2643279.3635597304, 2672443.1546003688, 2687659.5178374872, 2702128.5513395425, 2709501.

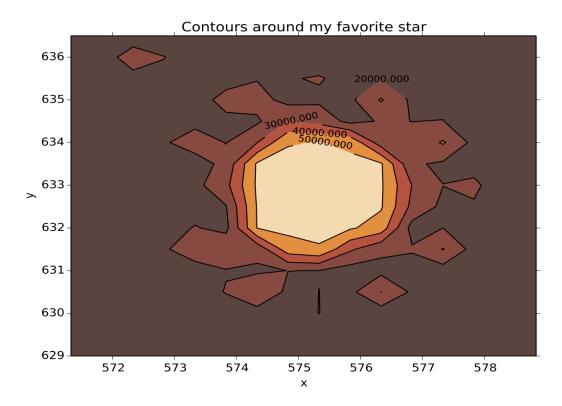
→1520242952, 2720134.8632924128, 2734777.3482598308, 2746056.5231984705, 2770352.0070485324, 2781242.

→3299104609]
```

1.8 Histogram Plots


Pressing the "h" key will display a histogram of pixel values around the pixel location under the mouse pointer.

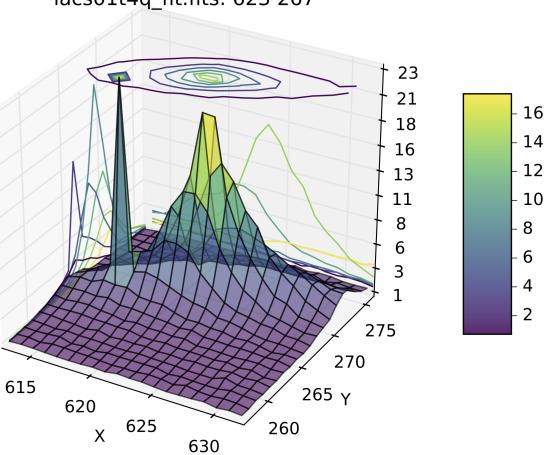
1.9 Contour Plots


Pressing the "e" key will display a contour plot around the clicked pixel location.

1.9. Contour Plots 35

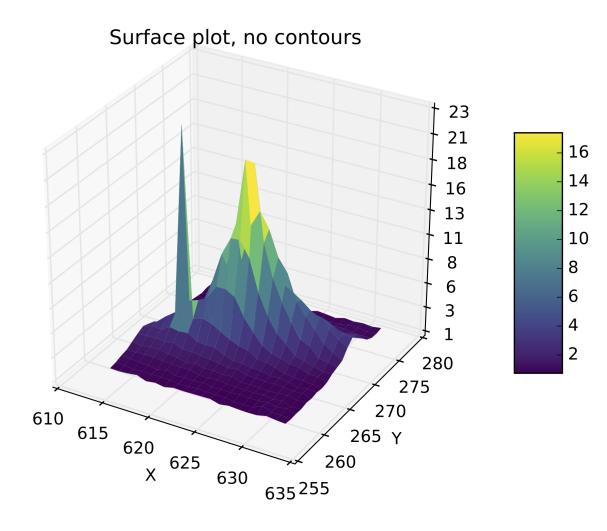
Here's what it looks like if we change some of the default parameters:

```
viewer.set_plot_pars('e', "cmap", "gist_heat")
viewer.set_plot_pars('e', "title", "Contours around my favorite star")
viewer.set_plot_pars('e', "ncontours", 4)
viewer.set_plot_pars('e', "floor", 0)
```



Note: You can use any of the matplotlib standard cmaps, see the following link for more information: http://matplotlib.org/api/pyplot_summary.html?highlight=colormaps#matplotlib.pyplot.colormaps

1.10 Surface Plots


Pressing the "s" key will display a 3D surface plot of pixel values around the mouse pointer location with the default parameters:

1.10. Surface Plots 37

iacs01t4q_flt.fits: 623 267

Or, with the contours turned off (by setting fancy to False) and changing the title:

1.10. Surface Plots 39


1.11 Cutout a Simple FITS Image

```
Press 'q' to quit
2
        make the next plot in a new window
        aperture sum, with radius region_size
а
        return the gauss fit center of the object
b
        return column plot
C
        return a contour plot in a region around the cursor
        return a histogram in the region around the cursor
        1D [gaussian|moffat] line fit
        1D [gaussian|moffat] column fit
l
        return line plot
        square region stats, in [region_size], defayult is median
        return curve of growth plot
r
        save current figure to disk as [plot_name]
S
        Cut out an image stamp from under the mouse and save it
        display a surface plot around the cursor location
        return x,y,value of pixel
Х
        return x,y,value of pixel
pressed: t,576.0,634.0
Cutout at (575.0,633.0) save to ./cutout_575.0_633.07fdinJ.fits
```

Okay, I went to the star I like and pressed "t". Let's verify that we got what we wanted, it should be a cutout centered on the star that we've used in all the examples here:

```
image=fits.open('cutout_575.0_633.07fdinJ.fits')
viewer.frame(2)
viewer.view(image)
```

And the resulting frame view?

Sweet. Because this is a often used function I've made it a part of the standard selection set. If you wish to use the astropy 2D cutout method, you can create your own function which will also pass in the WCS object for the data so that the cutout retains it's WCS information.

1.12 User Specified functions

Users may code their own functions and bind them to keys by registering them with the imexam dictionary through the register method that lives in the exam object. As long as a unique key is provided, the new binding will be added to the dictionary of imexamine functions. The new functions do not have to have default dictionaries associated with them. The binding is only good for the current object, new instantiations of imexam.connect() will not have the new function unless the user specifically registers them.

Here's all the code for a function which saves the cursor location to a file called 'test.list' when the user presses the 'p' key:

```
def save_to_file(self,x,y,data):
    """Save the cursor location only to a file"""
    if data is None:
        data = self._data
    with open('test.list','a') as ofile:
        ofile.write("{0}\t{1}\n".format(x,y))
    print("Saved star to ",'test.list')
```

Now, import that into your python session, file, or here I'll just copy paste the definition to the session. This is an important step because the function reference is what you are going to send to the registration method. The registration method wants you to supply a dictionary which contains the key you want to assign that function to during the imexam() loop, and a tuple with the function name and description:

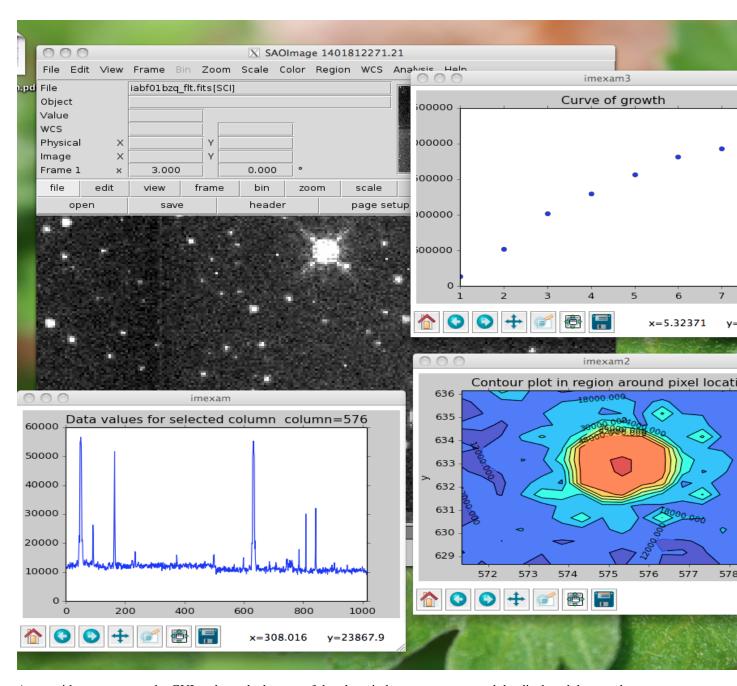
```
my_dict = {'p': (save_to_file, 'Save cursor location to file')}
viewer.exam.register(my_dict)
User function: save_to_file added to imexam options with key p
```

Okay, so let's try out our new function! We should be able to see it in the list of available options.

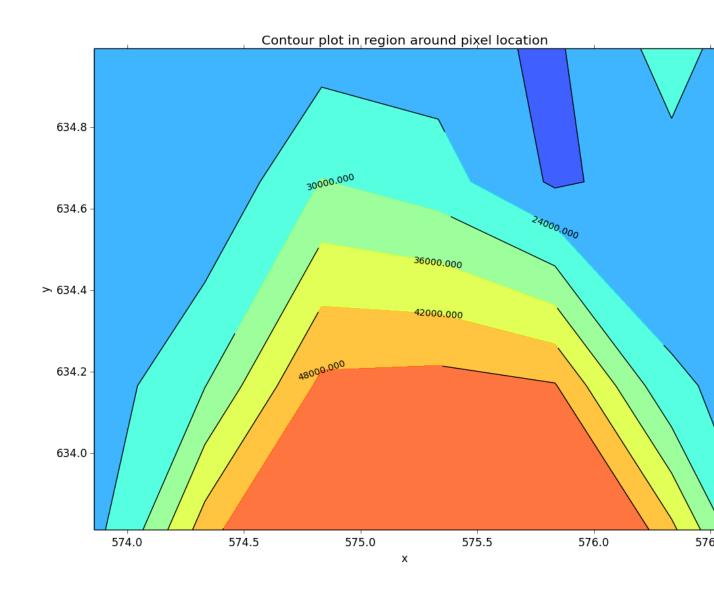
```
In [18]: a.imexam()
Press 'q' to quit
       Make the next plot in a new window
       Aperture sum, with radius region_size
а
b
       Return the 2D gauss fit center of the object
       Return column plot
С
       Return a contour plot in a region around the cursor
е
       Return curve of growth plot
g
       Return a histogram in the region around the cursor
       1D [Gaussian1D default] line fit
j
       1D [Gaussian1D default] column fit
1
       Return line plot
       Square region stats, in [region_size], default is median
m
       Save cursor location to file
р
       Return the radial profile plot
       Save current figure to disk as [plot_name]
s
t
       Make a fits image cutout using pointer location
W
       Display a surface plot around the cursor location
       Return x,y,value of pixel
Х
       Return x,y,value of pixel
У
Current image /Users/sosey/test_images/iacs01t4q_flt.fits
pressed: p, save_to_file
Saved star to test.list
In [19]: !more test.list
463.0 376.75
```

1.13 Plot Multiple Windows

During a single viewer.imexam() session, you can choose to send your plots to multiple windows. Each window may only be used once, but if you would like to plot multiple things to compare, either the same plots for multiple objects or multiple types of plots for a single object, you can press the "2" key. This will save the current plotting window on your desktop and send the next plot to a new window. The plotting windows will be closed when you exit the imexam loop, so be sure to use the "s" key to save a quick copy of any plots you'd like to save for reference. Here's what that might look like:


```
#direct to a new window and make a curve of growth ("r")
Plots now directed towards imexam3

#the resulting curve of growth information on the screen
xc=576.855763 yc=634.911425


at (x,y)=576,634
radii:[1 2 3 4 5 6 7 8]
flux:[134294.19631173008, 521208.13904411002, 1017231.0442446949, 1297592.7076232315, 1568629.

→6771239617, 1813434.3810552177, 1935335.7549474821, 2049080.846300941]
```

This is what the workspace could look like with DS9 as the viewer:

As an aside, you can use the GUI tools on the bottom of the plot windows to move around the displayed data, such as zooming in and out, as shown below for the contour plot, which was also saved using the GUI save button:

CHAPTER 2

imexam User Methods

These are methods particular to the imexam package which are meant to aid users in their image analysis. They are called from the main object you created with imexam.connect().

At the top library level, the follow commands are available::

```
imexam.connect(): connect to a viewer and return a control object
imexam.display_help(): Takes you to the help documents for your installed version of imexam
imexam.defpars: contains the default plotting function dictionaries
imexam.imexamine: this class contains the plotting functions and can be instantiated by itself
imexam.set_logging(): set the logging parameters for your session.
```

Each object has access to it's own logging which can be edited using viewer.setlog() The following will also be available for those not on a Windows system, where the XPA and DS9 are installed::

```
imexam.display_xpa_help(): Takes you to the XPA help page for DS9
imexam.list_active_ds9(): returns a dictionary of available DS9 sessions for connection
```

You can always get the commands available to your local viewer by asking the control object for them directly. If you called your control object "viewer" then the following example will return the list::

```
viewer.show_window_commands() # will return a list of available commands
```

Not all viewers have all commands implemented, commands which are available but not yet fully implemented should return an error to that affect.

alignwcs(on=True):

Align the images in the viewer using the WCS in their headers

```
viewer.alignwcs()
```

blink(blink=True, interval=None):

For viewers with multiple frames, blink the images

clear_contour():

Clear contours from the screen

close():

close the image viewing window and end the connection.

```
viewer.close()
```

cmap(color=None, load=None, invert=False, save=False,filename='colormap.ds9'):

Set the colormap for the window

colorbar(on=True):

Turn the colorbar in the window on or off

contour(on=True, construct=True):

Show contours in the window

$crosshair(x=None,\ y=None,\ coordsys="physical",\ skyframe="wcs",\ skyformat="fk5",\ match=False,\ lock=False):$

Control the position of the crosshair in the current frame

cursor(x=None, y=None):

Move the cursor in the window to the specified pixel location

disp_header():

Display the image header

frame(n=None):

Convenience function to change or report the frame

get_data():

Return a numpy array of the data displayed in the current frame

get_filename():

Return the filename for the data in the current window

```
In [1]: viewer.get_data_filename()
Out[2]: '/Users/sosey/ssb/imexam/iabf01bzq_flt.fits'
```

get_frame_info():

Return more explicit information about the data displayed in the current frame. A dictionary of the information is returned.

```
In [1]: viewer.get_frame_info()

{'extname': 'SCI',
    'extver': 1,
    'filename': '/Users/sosey/ssb/imexam/iabf01bzq_flt.fits',
    'iscube': False,
    'mef': True,
    'naxis': 0,
    'numaxis': 2,
    'user_array': None}
```

get_header():

Return the header of the dataset in the current frame

get image():

Return the full image object for the data in the current frame

get slice info():

Return the slice tuple for the image currently displayed

get_viewer_info():

Return a dictionary which contains information about all frames which have data loaded. This could be useful to users who are scripting an analysis for polling what items are available, how many frames or displayed, what type of data is hanging around, etc ...

```
In [1]: viewer.get_viewer_info()

{'1': {'extname': 'SCI',
    'extver': 1,
    'filename': '/Users/sosey/ssb/imexam/iabf01bzq_flt.fits',
    'iscube': False,
    'mef': True,
    'naxis': 0,
    'numaxis': 2,
    'user_array': None}}
```

grab():

Take a snapshop of the image view

grid(on=True, param=False):

Turn a grid on and off in the window

hideme():

Reduce the precedence of the window

iscube():

Boolean return if the image is multidimensional cube

load_fits(fname="", extver=1, extname=None):

Load a fits image into the current frame

load_mef_as_cube(filename=None):

Load a Mult-Extension-Fits image into one frame as an image cube

load mef as multi(filename=None):

Load a Mult-Extension-Fits image into multiple frames

load_region(filename):

Load regions from a file which uses standard formatting

load_rgb(red, green, blue, scale=False, lockwcs=False):

Load three images into an RGB colored frame

make_region(infile,doLabels=False):

Make an input reg file which contains rows with "x,y,comment" into a region file that the DS9 viewer recognizes.

infile: str

input filename

labels: bool

add labels to the regions

header: int

number of header lines in text file to skip

textoff: int

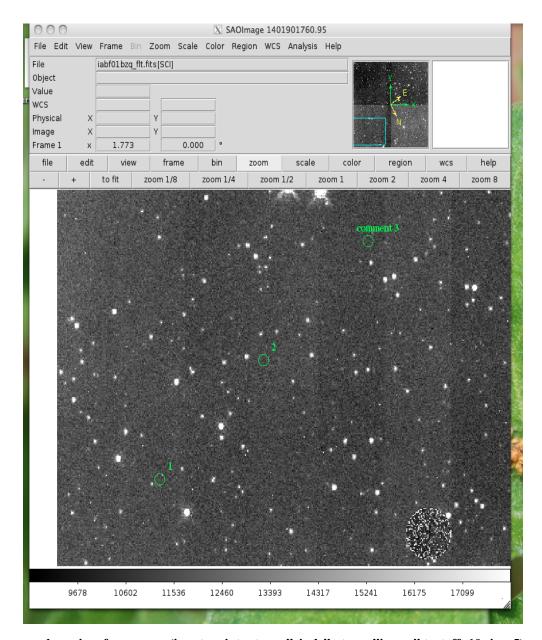
offset in pixels for labels

rtype: str

region type, one of the acceptable DS9 regions

size: int size of the region type

```
Here's what the input file 'test' looks like:


100,100, 1
200,200, 2
300,300, comment 3

viewer.make_region('test',labels=True)

And the output region file:

image; circle(100,100,5)
image;text(110.0,110.0{ 1 })# font="time 12 bold"
image; circle(200,200,5)
image;text(210.0,210.0{ 2 })# font="time 12 bold"
image; circle(300,300,5)
image;text(310.0,310.0{ comment 3 })# font="time 12 bold"
```

Now let's load the region file into our image:

$mark_region_from_array (input_points, rtype="circle", ptype="image", textoff=10, size=5):$

mark regions on the display given a list of tuples, a single tuple, or a string, where each object has x,y,comment specified

input_points: an iterable

contains: (x,y,comment) tuples

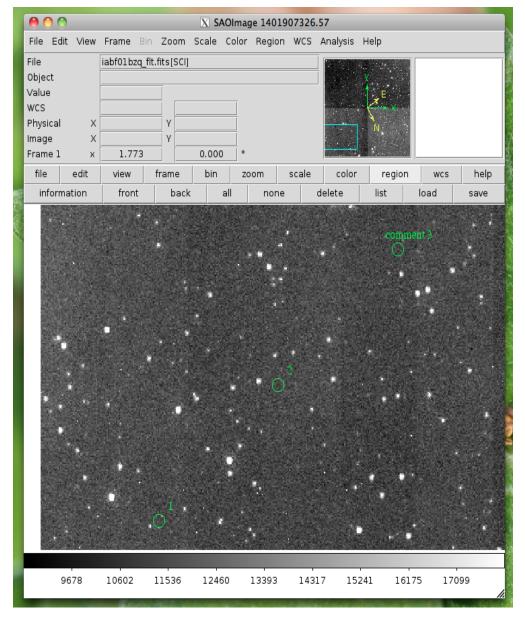
ptype: string

the reference system for the point locations, imagelphysicallfk5

rtype: string

the matplotlib style marker type to display

size: int


the size of the region marker

textoff: string

the offset for the comment text, if comment is empty it will not show

```
locations=list()
locations.append( (100,100,1) )
locations.append( (200,200,2) )
locations.append( (300,300,'comment 3') )

viewer.mark_region_from_array(locations)
```


match(coordsys="wcs", frame=True, crop=False, fslice=False,

scale=False, bin=False, colorbar=False, smooth=False, crosshair=False):

Match all other frames to the current frame

nancolor(color='red'):

Set the not-a-number color

panto_image(x, y):

Convenience function to change to x,y physical image coordinates

panto_wcs(x, y, system='fk5'):

Pan to the wcs location in the image

readcursor():

Returns image coordinate postion and key pressed as a tuple of the for float(x), float(y), str(key).

```
In [1]: viewer.readcursor()
Out[2]: (56.0, 28.333333, 'a')
or with a click of the first mouse button
In [1]: viewer.readcursor()
Out[2]: (67.333333, 80.0, '<1>')
```

reopen():

Reopen a closed viewing window, mostly used for ginga windows right now

rotate(value=None, to=False):

Rotate the current frame (in degrees)

save regions(filename=None):

Save the regions currently displayed in the window to a regions file

save_rgb(filename=None):

Save an rgbimage frame as an MEF fits file

scale(scale='zscale'):

Scale the pixel values in the window, zscale is the default

set_region(region_string):

Use this to send the DS9 viewer a formatted region string it's expecting

For example, in DS9:

```
viewer.set_region("text 110.0 110.0 '1' #font=times")
See the DS9 XPA documentation for more examples.
```

show_xpa_commands():

Print the available XPA commands (DS9 only)

showme():

Raise the precedence of the viewing window

showpix():

Display a pixel value table

snapsave(filename=None, format=None, resolution=100):

Create a snapshot of the current window in the specified format

valid data in viewer():

Return bool if valid file or array is loaded into the viewer

view(img, header=None, frame=None, asFits=False):

Load an image array into the image viewing frame, if no frame is specified, the current frame is used. If no frame exists, then a new one is created. A basic header is created and sent to DS9. You can look at this header with disp_header() but get_header() will return an error because it looks for a filename, and no file was loaded, just the array.

```
image_array=fits.getdata('image.fits')
viewer.view(image_array)

or

image_array=numpy.ones([100,100])*numpy.random.rand(100)
viewer.view(image_array)
```

zoom(par=None):

Zoom using the specified command in par

zoomtofit():

Zoom the image to fit the window

setlog(self, filename=None, on=True, level=logging.DEBUG):

Turn on and off imexam logging to the a file. You can set the filename to something specific or let the package record to the default logfile. Once you give the object a logfile name, it will continue to use that file until you change it.

```
In [5]: viewer.setlog()
Saving ``imexam`` commands to imexam_log.txt
```

This is what's displayed in the terminal when you use imexam():

```
In [8]: viewer.imexam()
Press 'a' to quit
        make the next plot in a new window
        aperture sum, with radius region_size
а
b
        return the gauss fit center of the object
        return column plot
C
e
        return a contour plot in a region around the cursor
h
        return a histogram in the region around the cursor
i
        1D [gaussian|moffat] line fit
        1D [gaussian|moffat] column fit
k
ι
        return line plot
        square region stats, in [region_size], defayult is median
m
        return curve of growth plot
r
        save current figure to disk as [plot_name]
s
        display a surface plot around the cursor location
W
        return x,y,value of pixel
Х
        return x,y,value of pixel
у
Current image /Users/sosey/ssb/imexam/iabf01bzq_flt.fits
pressed: x
586.0 698.0 56186.0
pressed: a
xc=586.604008
               yc=698.523846
                              radius
                                             flux
                                                             mag(zpt=25.00) sky
                                                                                           fwhm
                                                                            11166.86
                                                                                           6.03
586.60
               698.52
                              5
                                             1577310.08
                                                             9.51
pressed: b
xc=586.604008
               yc=698.523846
In [9]:
```

and this is what shows up in the logfile:

```
In [9]: more imexam_log.txt
_run_imexam
Current image /Users/sosey/ssb/imexam/iabf01bzq_flt.fits
show_xy_coords
623.0 560.0 51241.0
aper_phot
                                                             mag(zpt=25.00) sky
                               radius
                                              flux
                                                                                            fwhm
1.00
                                              11897.56
                                                             14.81
                                                                                            0.00
                                                                             3057.51
_run_imexam
Current image /Users/sosey/ssb/imexam/iabf01bzq_flt.fits
show_xy_coords
586.0 698.0 56186.0
gauss_center
xc=586.604008
                yc=698.523846
aper_phot
                                              flux
                                                             mag(zpt=25.00) sky
                               radius
                                                                                            fwhm
               698.52
                                                                            11166.86
586.60
                                              1577310.08
                                                             9.51
                                                                                            6.03
gauss_center
xc=586.604008
                vc=698.523846
In [10]:
```

You can see there are some leftovers from a previous logging session to the same file. You can toggle logging during a session too:

```
viewer.setlog(on=False)

#and to turn off even messages to the screen:
viewer.setlog(on=False,level=logging.CRITICAL)
```

unlearn():

Reset all the imexam default function parameters

plotname():

change or show the default save plotname for imexamine

```
In [1]: viewer.plotname()
imexam_plot.pdf

In [2]: viewer.plotname('myplot.jpg')
In [3]: viewer.plotname()
myplot.jpg
```

The extension of the filename controls the plot type.

display_help():

Display the help documentation into a webpage from the locally installed version. This is done from the main package:

```
In [1]: import imexam
In [2]: imexam.display_help()
```

Convenience functions for DS9's (XPA) commands

Note: The full list of XPA access points can be found at: http://ds9.si.edu/doc/ref/xpa.html and XPA itself is maintained here https://github.com/ericmandel/xpa

If there is no convenience function for an access point that you would like to use, you can still call it using the imexam hooks into the xpa GET and SET functions. They are aliased to your object (for example "window") as window.window.xpa.get() or window.window.xpa.set()

alignwcs (on=True):

align loaded images by wcs,

blink (blink=None,interval=None):

blink frames

clear_contour ():

clear contours from the screen

cmap (color=None,load=None,invert=False,save=False, filename='colormap.ds9'):

set the color map of the current frame The available maps are "heat", "grey", "cool", "aips0", "a", "b", "bb", "he", "i8"

color: string

color must be set to one of the available DS9 color map names

load: string, optional

set to the filename which is a valid colormap lookup table valid contrast values are from 0 to 10, and valid bias values are from 0 to 1

invert: bool, optional

invert the colormap

save: bool, optional

save the current colormap as a file

filename: string, optional

the name of the file to save the colormap to

colorbar (on=True):

turn the colorbar at the bottom of the screen on and off

contour (on=True, construct=True):

on: Set to true to turn on contours

construct: optional

Will open the contour dialog box which has more options

contour load (filename):

load contours into the window from the specified filename

crosshair (x=none,y=none,coordsys="physical",skyframe="wcs",skyformat="fk5",match=False,lock=False):

control the current position of the crosshair in the current frame, crosshair mode is turned on

x: string or int

The value of x is converted to a string for the call to XPA, use a value here appropriate for the skyformat you choose

y: string or int

The value of y is converted to a string for the call to XPA, use a value here appropriate for the skyformat you choose

coordsys: string, optional

The coordinate system your x and y are defined in

skyframe: string, optional

If skyframe has "wcs" in it then skyformat is also sent to the XPA

skyformat: string, optional

Used with skyframe, specifies the format of the coordinate which were given in x and y

match: bool, optional

If set to True, then the wcs is matched for the frames

lock: bool, optional

If set to True, then the frame is locked in wcs

cursor (x=None,y=None):

move the cursor in the current frame to the specified image pixel, it will also move selected regions

disp header ():

display the current header using the ds9 header display window

frame (n=None):

convenience function to switch frames or load a new frame (if that number does not already exist)

n: int, string, optional

The frame number to open or change to. If the number specified doesn't exist, a new frame will be opened If nothing is specified, then the current frame number will be returned. The value of n is converted to a string before passing to the XPA

frame(1) sets the current frame to 1 frame("last") set the current frame to the last frame frame() returns the number of the current frame frame("new") opens a new frame frame(3) opens frame 3 if it doesn't exist already, otherwise goes to frame 3

get_header ():

return the header of the current extension as a string, or None if there's a problem

grid (on=True, param=False):

turn the grid on and off if param is True, then a diaglog is opened for the grid parameters

hideme ():

lower the ds9 window on your display

load fits (fname=None, extname=1, extver='SCI'):

load a fits image to the current frame. You provide just the name, or either of the extname or extver, or you can specify the extension with the filename string. For example:

load_fits('something.fits',extver='SCI') will load the SCI,1 extension

load fits('something.fits[SCI,1]') will load the SCI,1 extension

load_fits('something.fits') will load the main data extension; the only data information in the case of simple fits, or the first extension in the case of a multiextension file

load_region (filename):

load the specified DS9 formatted region filename

load_rgb (red, green, blue,scale=False, lockwcs=False):

load 3 images into an RGBimage frame, the parameters are:

```
red: string, The name of the fits file which will be loaded into the red channel green: string, The name of the fits file which will be loaded into the green channel blue: string, The name of the fits file which will be loaded into the blue channel scale: bool, If True, then each image will be scale with zscale() after loading lockwcs: bool, If True, then the image positions will be locked to each other using the WCS____information in their headers
```

load mef as cube (filename=None):

Load a Mult-Extension-Fits image into one frame as an image cube in the image viewer

load_mef_as_multi (filename=None):

Load a Mult-Extension-Fits image into multiple frames in the image viewer

match all other frames to the current frame using the specified ontion. You can only choose one of the ontions

match all other frames to the current frame using the specified option. You can only choose one of the options at a time, so set frame=False and something else in addition to your choice if you don't want the default option.

match (coordsys="physical",frame=False,crop=False,fslice=False,scale=False,bin=False,colorbar=False,smooth=False,crosshair

coordsys: string, optional

The coordinate system to use

frame: bool, optional

Match all other frames to the current frame, using the set coordsys

crop: bool, optional

Set the current image display area, using the set coordsys

fslice: bool, optional

Match current slice in all frames

scale: bool, optional

Match to the current scale for all frames

bin: bool, optional

Match to the current binning for all frames

colorbar: bool, optional

Match to the current colorbar for all frames

smooth: bool, optional

Match to the current smoothing for all frames

crosshair: bool, optional

Match the crosshair in all frames, using the current coordsys

nancolor (color="red"):

set the not-a-number color, default is red

panto_image (x, y)

convenience function to change to x,y images coordinates using ra,dec

panto wcs (x, y,system='fk5'):

pan to the wcs coordinates in the image using the specified system

x: string

The x location to move to, specified using the given system

y: string

The y location to move to

system: string

The reference system that x and y were specified in, they should be understood by DS9

rotate (value, to=False):

value: float [degrees]

Rotate the current frame {value} degrees If value is 0, then the current rotation is printed

to: bool

Rotate the current frame to the specified value instead

save header (filename=None):

save the header of the current image to a file

save_rgb (filename=None):

save an rgbimage frame as an MEF fits file

save_regions (filename=None):

Save the regions in the current window to a DS9 style regions file

filename: string

The name of th file to which the regions displayed in the current window are saved If no filename is provided then it will try and save the regions to the name of the file in the current display with _regions.txt appended

If a file of that name already exists on disk it will no attempt to overwrite it

scale (scale='zscale'):

Scale the image on display. The default zscale is the most widely used option:

```
Syntax
scales available: [linear|log|pow|sqrt|squared|asinh|sinh|histequ]

[log exp <value>]
[datasec yes|no]
[limits <minvalue> <maxvalue>]
[mode minmax|<value>|zscale|zmax]
[scope local|global]
[match]
[lock [yes|no]]
[open|close]
```

set_region (region_string):

display a region using the specifications in region_string example: set_region("physical; ruler 200 300 200 400")

showme ():

raise the ds9 display window

showpix ():

display the pixel value table

snapsave (filename,format=None,resolution=100):

create a snap shot of the current window and save in specified format. If no format is specified the filename extension is used

filename: str, optioan

filename of output image, the extension in the filename can also be used to specify the format If no filename is specified, then the filename will be constructed from the name of the currently displayed image with _snap.jpg appended.

format: str, optional

available formats are fits, eps, gif, tiff, jpeg, png If no format is specified the filename extension is used

resolution: int, optional

1 to 100, for jpeg images

zoom (par="to fit"):

par: string

it can be a number (ranging 0.1 to 8), and successive calls continue zooming in the same direction it can be two numbers '42', which specify zoom on different axis if can be to a specific value 'to 8' or 'to fit', "to fit" is the default it can be 'open' to open the dialog box it can be 'close' to close the dialog box (only valid if the box is already open)

zoomtofit ():

zoom to the best fit for the display window

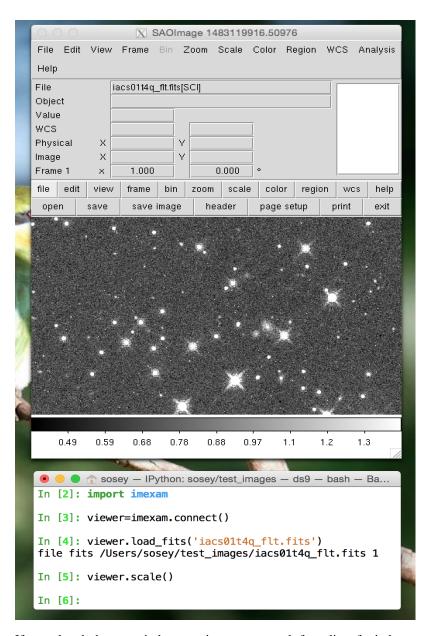
CHAPTER 4

Example 1

Note: More examples in the form of Jupyter notebooks can be downloaded from the git repository and are contained in the "example_notebooks" directory.

4.1 Basic Usage

First you need to import the package


import imexam

4.2 Usage with D9 (the current default viewer)

If you are on a windows system, DS9 may not be available, so move on to the Ginga specification.

Start up a DS9 window (by default), a new DS9 window will be opened, open a fits image, and scale it:

```
viewer=imexam.connect()
viewer.load_fits('iacs01t4q_flt.fits')
viewer.scale()
```

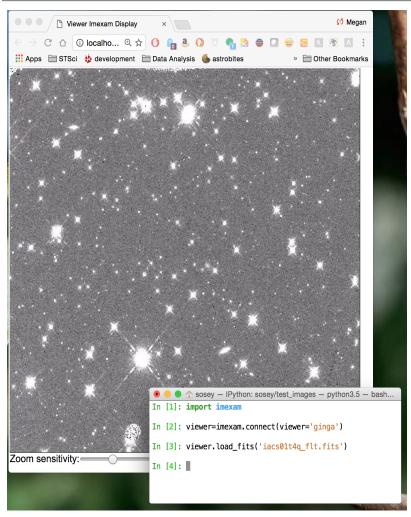

If you already have a window running, you can ask for a list of windows; windows that you start from the imexam package will not show up, this is to keep control over their processes and prevent double assignments.

```
# This will display if you've used the default command above and have no other DS9 windows open
In [1]: imexam.list_active_ds9()
No active sessions registered
Out[2]: {}

# open a window in another process
In [3]: !ds9&
In [4]: imexam.list_active_ds9()
DS9 ds9 gs /tmp/xpa/DS9_ds9.60457 sosey
Out[5]: {'/tmp/xpa/DS9_ds9.60457': ('ds9', 'sosey', 'DS9', 'gs')}imexam.list_active_ds9()
DS9 ds9 gs 82a7e75f:57222 sosey
```

You can attach to a current DS9 window be specifying its unique name

```
viewer1=imexam.connect('ds9')
```


If you haven't given your windows unique names using the -t <name> option from the commandline, then you must use the ip:port address:

```
viewer=imexam.connect('82a7e75f:57222')
```

4.3 Usage with Ginga viewer

Start up a ginga window using the HTML5 backend and display the same image as above. Make sure that you have installed the most recent version of ginga, imexam will return an error that the viewer cannot be found otherwise.:

```
viewer=imexam.connect(viewer='ginga')
viewer.load_fits()
```


Note: All commands after your chosen viewer is opened are the same. Each viewer also has it's own set of commands which you can additionally use. You may use any viewer for the examples which follow.

Load a fits image into the window:

```
viewer.load_fits('test.fits')
```

Scale the image to the default scaling, which is a zscale algorithm, but the viewers other scaling options are also available:

```
viewer.scale()
viewer.scale('asinh') <-- uses asinh</pre>
```

Change to heat map colorscheme:

```
viewer.cmap(color='heat')
```

Make some marks on the image and save the regions using a DS9 style regions file:

```
viewer.save_regions('test.reg')
```

Delete all the regions you made, then load from file:

```
viewer.load_regions('test.reg')
```

Plot stuff at the cursor location, in a while loop. Type a key when the mouse is over your desired location and continue plotting with the available options:

```
viewer.imexam()
```

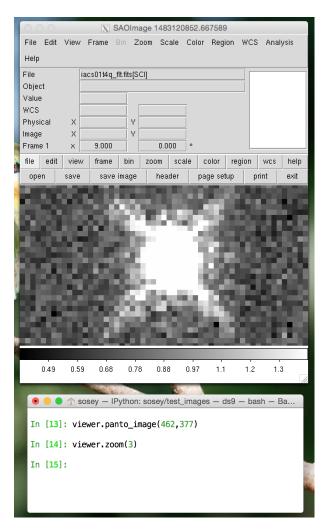
Quit out and delete windows and references, for the ginga HTML5 window, this will not close the browser window with the image display, you'll need to exit that manually. However, if you've accidentally closed that window you can reopen and reconnect to the server:

```
viewer.close()
viewer.reopen()
```

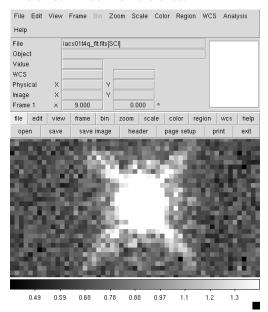
CHAPTER 5

Example 2

5.1 Aperture Photometry

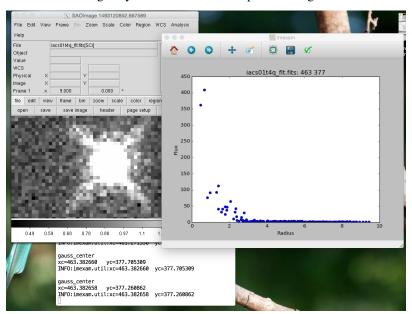

- Perform manual aperture photometry on supplied image
- Make curve of growth and radial profile plots
- Save the profile data and plot to files.

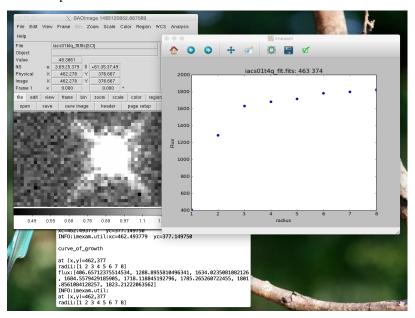
5.1.1 Method 1


Assuming we've already connected to the window where the data is displayed:

- This method first uses the "a" key to check out the aperture photometry with the default settings
- Display a radial profile "r" plot around the start we choose
- Look at the curve of growth "g" plot
- Make a new profile plot, print the plotted points to the screen, and save a copy of the plotting window for reference

Here a picture of the area I'm looking at on my desktop:

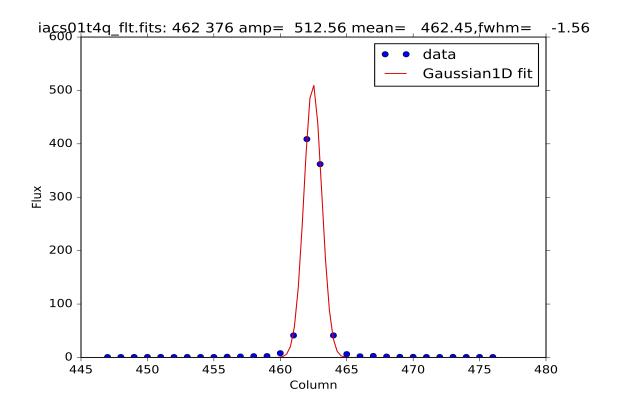

If you wanted to save a screenshot of the viewer display you can use viewer.grab(), in DS9 this will save a snap of the whole DS9 window for reference:


Now let's start up the imexam() loop and look at a plot of star:

```
viewer.imexam() #start an imexam session
```

Use the "r" and "g" keys to look at the radial profile and growth curves:

Note that part of the screen information that's returned includes the flux and radii information:



Let's take this information and set the radii for our quick aperture photometry:

```
In [1]: viewer.aimexam()
Out[2]:
{'center': [True, 'Center the object location using a 2d gaussian fit'],
'function': ['aper_phot'],
'radius': [5, 'Radius of aperture for star flux'],
'skyrad': [15, 'Distance to start sky annulus is pixels'],
'subsky': [True, 'Subtract a sky background?'],
```

```
'width': [5, 'Width of sky annulus in pixels'],
'zmag': [25.0, 'zeropoint for the magnitude calculation']}
In [3]: viewer.set_plot_pars('a', 'radius', 4)
set aper_phot_pars: radius to 4
In [4]: viewer.set_plot_pars('a','skyrad',8)
set aper_phot_pars: skyrad to 8
In [23]: viewer.imexam()
Press 'q' to quit
   Make the next plot in a new window
   Aperture sum, with radius region_size
   Return the 2D gauss fit center of the object
c Return column plot
e Return a contour plot in a region around the cursor
  Return curve of growth plot
  Return a histogram in the region around the cursor
   1D [Gaussian1D default] line fit
  1D [Gaussian1D default] column fit
  Return line plot
  Square region stats, in [region_size], default is median
   Return the radial profile plot
   Save current figure to disk as [plot_name]
   Make a fits image cutout using pointer location
   Display a surface plot around the cursor location
   Return x,y,value of pixel
   Return x,y,value of pixel
Current image /Users/sosey/test_images/iacs01t4q_flt.fits
gauss_center
xc=462.827108
                   yc=377.705312
aper_phot
                   radius
                                                                fwhm
                             flux
                                        mag(zpt=25.00) sky
                              1686.24
462.83
          377.71
                                         16.93
                                                               1.71
                                                        0.92
```

Just for some more information on the star, below is the gaussian fit "j" to the columns of the same star.

5.1.2 Method 2

Assuming we've already connected to the DS9 window where the data is displayed:

- First we turn on logging so that everything gets saved to a file
- We then use the "a" key to check out the aperture photometry with the default settings
- Use the "g" to look at the curve of growth
- Adjust the aperture photometry with our our own settings
- We can then use the log file, to create a plot

```
In [1]: viewer.setlog('mystar.log')
Saving imexam commands to mystar.log
In [2]: viewer.unlearn()

In [3]: viewer.imexam()

Press 'q' to quit

2   Make the next plot in a new window
a   Aperture sum, with radius region_size
b   Return the 2D gauss fit center of the object
c   Return column plot
e   Return a contour plot in a region around the cursor
g   Return curve of growth plot
h   Return a histogram in the region around the cursor
j   1D [Gaussian1D default] line fit
k   1D [Gaussian1D default] column fit
```

```
1 Return line plot
   Square region stats, in [region_size], default is median
m
  Return the radial profile plot
  Save current figure to disk as [plot_name]
  Make a fits image cutout using pointer location
  Display a surface plot around the cursor location
  Return x,y,value of pixel
  Return x,y,value of pixel
Current image /Users/sosey/test_images/iacs01t4q_flt.fits
                   yc=377.260860
xc=462.938220
                   radius flux
                                       mag(zpt=25.00) sky
                                                              fwhm
462.94
          377.26 5
                            1739.97
                                       16.90
                                                      0.72
                                                             1.44
at (x,y)=462,377
radii:[1 2 3 4 5 6 7 8]
flux:[406.65712375514534, 1288.8955810496341, 1634.0235081082126,
1684.5579429185905, 1718.118845192796, 1785.265260722455,
1801.8561084128257, 1823.21222063562]
```

Lets get some more aperture photometry at larger radii by resetting some of the "a" key values::

This is what mystar.log contains, you can parse the log, or copy the data and use as you like to make interesting plots later or just have for reference.:

```
gauss_center
xc=462.938220 yc=377.260860
aper_phot
                  radius
                            flux
                                      mag(zpt=25.00) sky
                                                             fwhm
          ٧
462.94
          377.26 5
                           1739.97 16.90
                                                      0.72
                                                            1.44
gauss_center
xc=462.827110 yc=377.371969
gauss_center
xc=462.827109 yc=377.260860
gauss_center
xc=462.827109 yc=377.260860
curve_of_growth
at (x,y)=462,377
radii:[1 2 3 4 5 6 7 8]
flux:[406.65712375514534, 1288.8955810496341, 1634.0235081082126,
```

```
1684.5579429185905, 1718.118845192796, 1785.265260722455,
1801.8561084128257, 1823.21222063562]

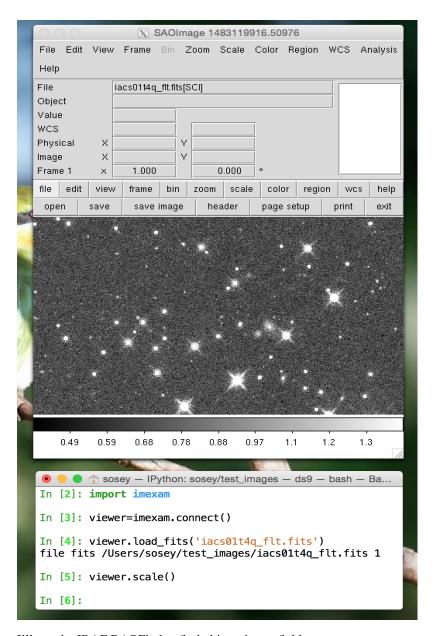
gauss_center
xc=463.049330 yc=377.038640

aper_phot
x y radius flux mag(zpt=25.00) sky fwhm
463.05 377.04 4 1679.23 16.94 0.93 1.71
```

74

CHAPTER 6

Example 3


6.1 Advanced Usage - Interact with Daophot and Astropy

While the original intent for the imexam module was to replicate the realtime interaction of the old IRAF imexamine interface with data, there are other possibilities for data analysis which this module can support. One such example, performing more advanced interaction which can be scripted, is outlined below, using familiar IRAF tasks.

Note: You can see a similar photometry example which uses photutils and it's implementation of DAOPhot aperture photometry instead of IRAF in the imexam_ds9_photometry example jupyter notebook.

If you have a list of source identifications, perhaps prepared by SExtractor, DAOFind, Starfind or a similar program, you can use imexam to display the science image and overlay apertures for all their locations. From there you can do some visual examination and cleaning up of the list with a combination of region manipulation and useful imexam methods.

Here's our example image to work with, which is a subsection of a larger image:

I'll use the IRAF DAOFind to find objects in my field:

```
from pyraf import iraf
from iraf import noao, digiphot, daophot
from astropy.io import fits
image='iabf01bzq_flt.fits'
fits.info('iabf01bzq_flt.fits')
    Filename: iabf01bzq_flt.fits
    No.
           Name
                        Туре
                                   Cards
                                           Dimensions
                                                        Format
         PRIMARY
                                                        int16
    0
                     PrimaryHDU
                                     210
                                           ()
                                                          float32
    1
         SCI
                     ImageHDU
                                      81
                                           (1014, 1014)
    2
         ERR
                     ImageHDU
                                      43
                                           (1014, 1014)
                                                          float32
         DQ
                     ImageHDU
                                      35
                                           (1014, 1014)
                                                          int16
         SAMP
                     ImageHDU
                                                        int16
                                           ()
```

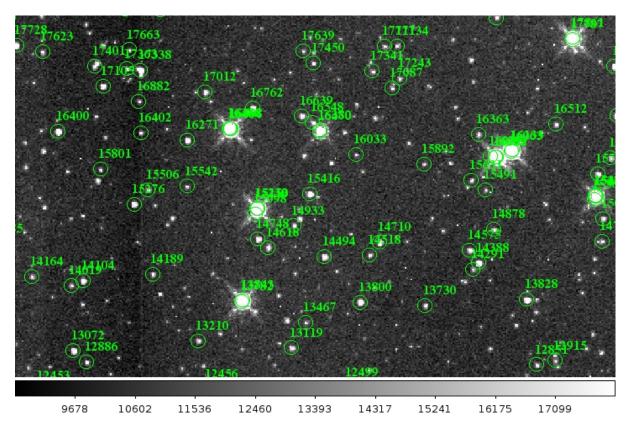
```
TIME
                     ImageHDU
                                                       float32
#set up some finding parameters, you can make this more explicit
iraf.daophot.findpars.threshold=3.0 #3sigma detections only
iraf.daophot.findpars.nsigma=1.5 #width of convolution kernal in sigma
iraf.daophot.findpars.ratio=1.0 #ratio of gaussian axes
iraf.daophot.findpars.theta=0.
iraf.daophot.findpars.sharplo=0.2 #lower bound on feature
iraf.daophot.findpars.sharphi=1.0 #upper bound on feature
iraf.daophot.findpars.roundlo=-1.0 #lower bound on roundness
iraf.daophot.findpars.roundhi=1.0 #upper bound on roundness
iraf.daophot.findpars.mkdetections="no"
    In [84]: iraf.lpar(iraf.daophot.datapars)
           (scale = 1.0)
                                    Image scale in units per pixel
         (fwhmpsf = 2.5)
                                    FWHM of the PSF in scale units
        (emission = yes)
                                    Features are positive?
                                    Standard deviation of background in counts
           (sigma = 1.0)
         (datamin = 0.0)
                                    Minimum good data value
         (datamax = INDEF)
                                    Maximum good data value
           (noise = "poisson")
                                    Noise model
         (ccdread = "")
                                    CCD readout noise image header keyword
            (gain = "ccdgain")
                                    CCD gain image header keyword
       (readnoise = 2.0)
                                    CCD readout noise in electrons
          (epadu = 1.0)
                                    Gain in electrons per count
        (exposure = "exptime")
                                    Exposure time image header keyword
         (airmass = "")
                                    Airmass image header keyword
         (filter = "")
                                    Filter image header keyword
         (obstime = "")
                                    Time of observation image header keyword
          (itime = 1.0)
                                    Exposure time
                                    Airmass
        (xairmass = INDEF)
         (ifilter = "INDEF")
                                    Filter
           (otime = "INDEF")
                                    Time of observation
            (mode = "ql")
iraf.daophot.datapars.datamin=0.
iraf.daophot.datapars.gain="ccdgain"
iraf.daophot.datapars.exposure="exptime"
iraf.daophot.datapars.sigma=105.
#assume the science extension and find some stars
sci="[SCI,1]"
output_locations='iabf01bzq_stars.dat'
iraf.daofind(image=image+sci,output=output_locations,interactive="no",verify="no",verbose="no")
#This is just the top of the file that daofind produced:
    In [24]: more iabf01bzq_stars.dat
    #K IRAF
                 = NOAO/IRAFV2.16
                                            version
                                                       %-23s
    #K USER
                 = sosey
                                            name
                                                       %-23s
    #K HOST
                 = intimachay.stsci.edu
                                                       %-23s
                                            computer
                 = 2014-03-28
                                            yyyy-mm-dd %-23s
    #K DATE
    #K TIME
                 = 15:34:56
                                            hh:mm:ss %-23s
                 = apphot
    #K PACKAGE
                                            name
                                                       %-23s
                 = daofind
                                            name
    #K TASK
                                                       %-23s
```

```
#K SCALE
                                                     %-23.7g
              = 1.
                                          units
#K FWHMPSF
              = 2.5
                                          scaleunit %-23.7g
#K EMISSION
              = yes
                                          switch
                                                     %-23b
                                          counts
#K DATAMIN
              = 0.
                                                     %-23.7g
#K DATAMAX
              = INDEF
                                          counts
                                                     %-23.7g
#K EXPOSURE
              = exptime
                                          keyword
                                                     %-23s
              = ""
#K AIRMASS
                                          keyword
                                                     %-23s
              = ""
#K FILTER
                                          keyword
                                                     %-23s
              = ""
#K OBSTIME
                                          keyword
                                                     %-23s
#K NOISE
              = poisson
                                          model
                                                     %-23s
#K SIGMA
              = 105.
                                          counts
                                                     %-23.7g
#K GAIN
              = ccdgain
                                          keyword
                                                     %-23s
#K EPADU
              = 2.5
                                          e-/adu
                                                     %-23.7g
              = ""
#K CCDREAD
                                          keyword
                                                     %-23s
#K READNOISE = 0.
                                                     %-23.7g
                                          e-
              = iabf01bzq_flt.fits[SCI, imagename %-23s
#K IMAGE
#K FWHMPSF
              = 2.5
                                          scaleunit %-23.7g
\#K THRESHOLD = 3.
                                          sigma
                                                     %-23.7g
#K NSIGMA
              = 2.
                                          sigma
                                                     %-23.7g
#K RATIO
              = 1.
                                          number
                                                     %-23.7g
#K THETA
              = 0.
                                          degrees
                                                     %-23.7g
#K SHARPLO
              = 0.2
                                          number
                                                     %-23.7g
#K SHARPHI
              = 1.
                                          number
                                                     %-23.7g
#K ROUNDLO
              = -1.
                                                     %-23.7g
                                          number
#K ROUNDHI
              = 1.
                                          number
                                                     %-23.7g
#
#N XCENTER
             YCENTER
                                 SHARPNESS
                                              SROUND
                                                          GROUND
                                                                       ID
                       MAG
                                                                                   \
                        #
                                                                       #
                                                                                   \
#U pixels
             pixels
                                 #
                                              #
                                                          #
#F %-13.3f
             %-10.3f
                        %-9.3f
                                 %-12.3f
                                              %-12.3f
                                                          %-12.3f
                                                                       %-6d
   194.694
             2.357
                        -3.335
                                 0.919
                                              0.141
                                                          -0.004
                                                                       1
   232.659
             2.889
                        -1.208
                                 0.768
                                              0.572
                                                          -0.289
                                                                       2
  237.782
                       -1.182
             2.925
                                 0.669
                                              0.789
                                                          -0.971
                                                                       3
                                 0.976
   265.715
             2.797
                        -1.395
                                              -0.450
                                                          -0.669
                                                                       4
   419.792
             2.902
                        -3.045
                                 0.925
                                              -0.990
                                                          0.213
                                                                       5
   424.566
             3.081
                        -1.202
                                 0.923
                                              0.513
                                                          -0.555
                                                                       6
   534.758
             2.856
                        -1.341
                                              -0.676
                                                          -0.302
                                                                       7
                                 0.659
   580.964
             2.485
                        -1.326
                                 0.821
                                              -0.489
                                                          -0.752
                                                                       8
                       -1.282
   587.521
                                              -0.537
                                                                       9
             3.568
                                 0.911
                                                          -0.119
                       -1.103
                                                                       10
   725.016
             3.999
                                 0.714
                                              -0.653
                                                          -0.490
   736.495
                       -1.345
                                              -0.996
                                                          -0.730
             2.808
                                 0.710
                                                                       11
   746.529
             3.200
                       -0.868
                                 0.303
                                              -0.376
                                                          -0.682
                                                                       12
   757.672
             3.172
                       -1.527
                                 0.420
                                              0.271
                                                          0.211
                                                                       13
   768.768
             2.830
                        -1.321
                                 0.741
                                              -0.842
                                                          -0.252
                                                                       14
   799.199
             2.696
                        -2.096
                                 0.926
                                              0.476
                                                          -0.511
                                                                       15
             2.445
   807.575
                        -4.136
                                 0.745
                                              0.171
                                                          -0.131
                                                                       16
                       -1.482
   836.661
             2.790
                                 0.709
                                              0.205
                                                          0.636
                                                                       17
   879.390
             3.069
                        -1.018
                                 0.549
                                              -0.479
                                                          -0.495
                                                                       18
   912.820
             2.806
                        -1.414
                                 0.576
                                              0.504
                                                          0.109
                                                                       19
   938.794
             3.448
                       -1.731
                                              -0.239
                                                          0.100
                                                                       20
                                 0.997
   17.713
             2.731
                        -1.896
                                 0.286
                                              -0.947
                                                          -0.359
                                                                       21
   48.757
             2.755
                        -1.172
                                 0.586
                                              0.646
                                                          -0.543
                                                                       22
   105.894
                        -1.700
                                                          -0.006
                                                                       23
             3.030
                                 0.321
                                              -0.233
```

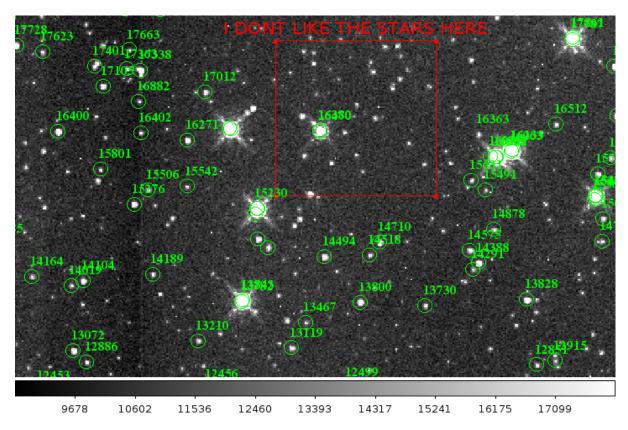
Now we want to read in the file that Daofind produced and save the x,y and ID information. I'm going to read the results using astropy.io.ascii

```
reader=ascii.Daophot()
photfile=reader.read(output_locations)
#some quick information on what we have now
photfile.colnames
   ['XCENTER', 'YCENTER', 'MAG', 'SHARPNESS', 'SROUND', 'GROUND', 'ID']
photfile.print()
   In [103]: photfile.pprint()
      XCENTER
                YCENTER
                            MAG
                                    SHARPNESS
                                                 SROUND
                                                             GROUND
                                                                        ID
   194.694
               2.357
                         -3.335
                                   0.919
                                               0.141
                                                          -0.004
                                                                      1
                                              0.572
                         -1.208
   232.659
               2.889
                                  0.768
                                                          -0.289
                                                                      2
   237.782
              2.925
                                               0.789
                                                          -0.971
                         -1.182
                                  0.669
                                                                      3
                         -1.395
                                  0.976
                                              -0.450
                                                          -0.669
                                                                      4
   265.715
              2.797
                                                                      5
   419.792
              2.902
                         -3.045 0.925
                                              -0.990
                                                          0.213
   424.566
              3.081
                         -1.202 0.923
                                               0.513
                                                          -0.555
                                                                      6
   534.758
                         -1.341
                                  0.659
                                              -0.676
                                                          -0.302
                                                                      7
              2.856
   580.964
              2.485
                         -1.326
                                  0.821
                                              -0.489
                                                          -0.752
                         -1.282
                                              -0.537
                                                          -0.119
                                                                      9
   587.521
              3.568
                                  0.911
   725.016
                         -1.103
                                              -0.653
                                                          -0.490
              3.999
                                  0.714
                                                                      10
                         -1.345
                                   0.710
                                              -0.996
                                                          -0.730
   736.495
               2.808
                                                                      11
   746.529
               3.200
                          -0.868
                                   0.303
                                              -0.376
                                                          -0.682
                                                                      12
   757.672
               3.172
                          -1.527
                                   0.420
                                               0.271
                                                          0.211
                                                                      13
   768.768
               2.830
                          -1.321
                                   0.741
                                              -0.842
                                                          -0.252
                                                                      14
   799.199
               2.696
                          -2.096
                                   0.926
                                               0.476
                                                           -0.511
                                                                      15
   807.575
               2.445
                         -4.136
                                   0.745
                                               0.171
                                                          -0.131
                                                                      16
```

You can even pop this up in your web browser if that's a good format for you: photfile.show_in_browser(). imexam has several functions to help display regions on the DS9 window. Since we have this data loaded into memory, the one we will use here is mark_region_from_array().


Let's make an array that the method will accept, namely a list of tuples which contain the (x,y,comment) that we want marked to the display. It will also accept any iterator containing a tuple of (x,y,comment).

```
#lets make a list of our locations as a tuple of x,y,comment
#we'll cut the list to a smaller area and only include those points whose mag is < -4.
locations=list()
for point in range(0,len(photfile['XCENTER']),1):
    if photfile['MAG'][point] < -4:
        locations.append((photfile['XCENTER'][point],photfile['YCENTER'][point],photfile['ID'][point]))


#so the first item looks like:
In [91]: locations[0]
Out[91]: (807.575000000000000, 2.44499999999999, 16)</pre>
```

Let's open up a DS9 window (if you haven't already) and display your image. This will let us display our source locations and play with them

```
viewer=imexam.connect()
viewer.load_fits('iabf01bzq_flt.fits')
viewer.scale() #scale to DS9 zscale by default
viewer.mark_region_from_array(locations)
```


Now we can get rid of some of the stars by hand and save a new file of locations we like. I did this arbitrarily because I decided I didn't like stars in this part of space. Click on the regions you don't want and delete them from the screen. You can even add more regions of your own choosing.

You can save these new regions to a DS9 style region file, either through DS9 or imexam

```
viewer.save_regions('badstars.reg')
```

Note: A future version of the imexam package will make use of the region interpreter currently being developed with astropy for smoother creation and use of parsable regions files

Here is what the saved region file looks like, you can choose to import this file into any future DS9 display of the same image using the viewer.load_regions() method. You might also want to parse the file to save just the location and comment information in a separate text file.

```
In [7]: !head badstars.reg
# Region file format: DS9 version 4.1
# Filename: /Users/sosey/ssb/sosey/testme/iabf01bzq_flt.fits[SCI]
global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0_
→fixed=0 edit=1 move=1 delete=1 include=1 source=1
fk5
circle(0:22:38.709,-72:02:50.58,0.677464")
# text(0:22:39.097,-72:02:50.86) font="time 12 bold" text={ 16 }
circle(0:22:36.340,-72:02:58.27,0.677464")
# text(0:22:36.729,-72:02:58.55) font="time 12 bold" text={ 140 }
circle(0:22:29.068,-72:03:20.78,0.677464")
# text(0:22:29.457,-72:03:21.06) font="time 12 bold" text={ 225 }
# text(0:22:56.855,-72:04:23.16) font="time 12 bold" text={ 21985 }
circle(0:22:42.791,-72:05:04.04,0.677464")
# text(0:22:43.180,-72:05:04.32) font="time 12 bold" text={ 22002 }
box(0:22:45.694,-72:04:19.19,14.593",13.1774",149.933) # color=red font="helvetica 16 normal roman"_
→text={I DONT LIKE THE STARS HERE}
```

6.2 Advanced Usage II - Cycle through objects from a list

This example will step through a list of object locations and center that object in the DS9 window with a narrow zoom so that you can examine it further (think about PSF profile creation options here..)

If you haven't already, start DS9 and load your image into the viewer. I'll assume that you started DS9 outside of imexam and will need to connect to the window first.

Read in your list of object locations, I'll use the same DAOphot targets from the previous example

Take your list of locations and cycle through each one, displaying a zoomed in section on the DS9 window and starting imexam for each coordinate. I'm just going to go through 10 or so random stars. You can set this up however you like, including using a keystroke as your stopping condition in conjunction with viewer.readcursor()

I'll also mark the object we're interested in on the display for reference

```
viewer.zoom(8)
for object in locations[100:110]:
    viewer.panto_image(object[0],object[1])
    viewer.mark_region_from_array(object)
    viewer.imexam()
```

CHAPTER 7

Example 4

7.1 Load and examine an image CUBE

Note: image cubes are currently only supported for the DS9 viewer.

Image cubes can be multi-extension fits files which have multidimensional (> 2) images in any of their extensions. When they are loaded into DS9, a cube dialog frame is opened along with a box which allows the user to control which slices are displayed. Here's what the structure of such a file might look like:

```
astropy.io.fits.info('test_cube.fits')
Filename: test_cube.fits
No.
       Name
                     Type
                               Cards
                                       Dimensions
                                                     Format
     PRIMARY
                 PrimaryHDU
                                 215
                                        ()
     SCI
                 ImageHDU
                                                               int16
                                  13
                                        (1032, 1024, 35, 5)
                 ImageHDU
     REFOUT
                                  13
                                        (258, 1024, 35, 5)
                                                              int16
```

You can use all the regular imexam methods with this image, including imexam() and the current slice which you have selected will be used for analysis. You can also ask imexam which slice is display, or the full image information of what is in the current frame for your own use (ds9 is just the name I chose, you can call the control object connected to your display window anything)

```
viewer=imexam.connect()
viewer.load_fits('test_cube.fits')
viewer.window.get_filename()

Out[24]: '/Users/sosey/ssb/imexam/test_cube.fits'
viewer.window.get_frame_info()
Out[25]: '/Users/sosey/ssb/imexam/test_cube.fits[SCI,1](0, 0)'
```

Now I'm going to use the Cube dialog to change the slice I'm looking at to (4,14) -> as displayed in the dialog. DS9 displayed 1-indexed numbers, and the fits utility behind imexam uses 0-indexed numbers, so expect the return to be off by a value of 1.

Let's ask for the information again:

```
In [26]: viewer.window.get_filename()
Out[26]: '/Users/sosey/ssb/imexam/test_cube.fits'
In [27]: viewer.window.get_frame_info()
Out[27]: '/Users/sosey/ssb/imexam/test_cube.fits[SCI,1](3, 13)'
```

You can ask for just the information about which slice is displayed and it will return the tuple(extension n,, extension n-1). The extensions are ordered in row-major form in astropy.io.fits:

```
In [28]: viewer.window.get_slice_info()
Out[28]: (3, 13)
```

The returned tuple contains just which 2d slice is displayed. In our cube image, which is 4D (1032, 1024, 35, 5) == (NAXIS1, NAXIS2, NAXIS3, NAXIS4) in DS9, however in astropy.io.fits this is (5,35,1024,1032) == (NAXIS4, NAXIS3, NAXIS2, NAXIS1)

By default, the first extension will be loaded from the cube fits file if none is specified. If you would rather see another extension, you can load it the same as with simpler fits files:

```
viewer.load_fits('test_cube.fits',extname='REFOUT')
```

CHAPTER 8

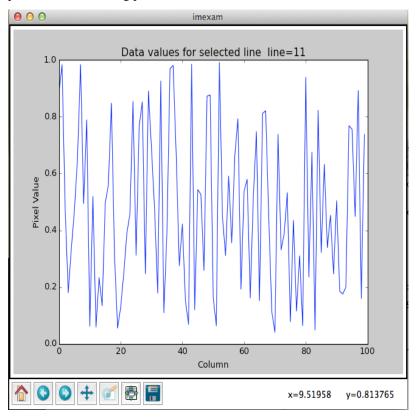
Example 5

8.1 Use the imexamine library standalone to create plots without viewing

It's possible to use the imexamine library of plotting functions without loading an image into the viewer. All of the functions take 3 inputs: the x, y, and data array. In order to access the function, first create an imexamine object:

```
from imexam.imexamine import Imexamine
import numpy as np

data=np.random.rand((100,100)) #create a random array thats 100x100 pixels
plots=Imexamine()
```

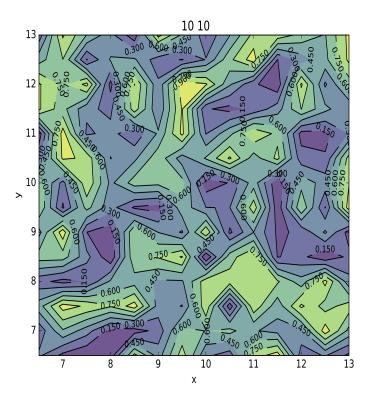

These are the functions you now have access to:

plots.aper_phot	plots.contour_plot	plots.histogram_plot	plots.
<pre>→plot_line</pre>	plots.set_colplot_pars	plots.set_surface_pars	
plots.aperphot_def_pars	plots.curve_of_growth_def_p	pars plots.imexam_option_funcs	plots.
<pre>→plot_name</pre>	plots.set_column_fit_pars	plots.show_xy_coords	
plots.aperphot_pars	plots.curve_of_growth_pars	plots.line_fit	plots.
<pre>→print_options</pre>	plots.set_contour_pars	plots.showplt	
plots.colplot_def_pars	plots.curve_of_growth_plot	plots.line_fit_def_pars	plots.
⇔register	plots.set_data	plots.sleep_time	
plots.colplot_pars	plots.do_option	plots.line_fit_pars	plots.
<pre>→report_stat</pre>	plots.set_histogram_pars	plots.surface_def_pars	
plots.column_fit	plots.gauss_center	plots.lineplot_def_pars	plots.
<pre></pre>	plots.set_line_fit_pars	plots.surface_pars	
plots.column_fit_def_pars	plots.get_options	plots.lineplot_pars	plots.
<pre>→report_stat_pars</pre>	plots.set_lineplot_pars	plots.surface_plot	
plots.column_fit_pars	plots.get_plot_name	plots.new_plot_window	plots.
<pre>→reset_defpars</pre>	plots.set_option_funcs	plots.unlearn_all	
plots.contour_def_pars	plots.histogram_def_pars	plots.option_descrip	plots.
⇔save_figure	plots.set_plot_name		
plots.contour_pars	plots.histogram_pars	plots.plot_column	plots.
→set_aperphot_pars	plots.set_radial_pars		

To create a plot, just specify the method:

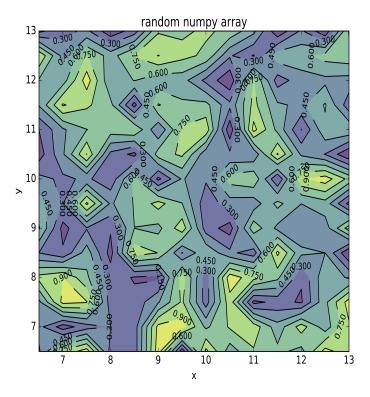
```
plots.plot_line(10,10,data)
```

produces the following plot:



You can then save the current plot using the save method:

```
plots.contour(10,10,data)
plots.save() # with an optional filename using filename="something.extname"


In [1]: plots.plot_name
Out[2]: 'imexam.pdf'
plots.close() # close the plot window
```

Where the extname specifies the format of the file, ex: jpg or pdf. A pdf file will be the default output, using the curent self.plot_name.

Note that no name is attached to the above contour plot because we plotted a data array. When you are using the plotting class without a viewer, you can attach any title you like by editing the plotting parameters using the dictionary directly::

plots.contour_pars['title'][0] = "random numpy array"

8.2 Return information to variables without plotting

Some of the imexamine() methods are capable of returning their results as data objects. First, lets import some useful things to use in the examples:

```
from astropy.io import fits
from imexam.imexamine import Imexamine

# get my example data from a fits image
data=fits.getdata()
```

Return the fitting result for a line (the same can be done for column_fit):

```
In [1]: plots.line_fit(462, 377, data, genplot=False)
using model: <class 'astropy.modeling.functional_models.Gaussian1D'>
Name: Gaussian1D
Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('amplitude', 'mean', 'stddev')
xc=462.438219    yc=377.038640
Out[1]: <Gaussian1D(amplitude=512.5638896303021, mean=462.45102207881393, stddev=-0.6638566150545719)>
# I could have specified an output object here instead and saved the model object:
In [1]: results = plots.line_fit(462, 377, data, genplot=False)
using model: <class 'astropy.modeling.functional_models.Gaussian1D'>
Name: Gaussian1D
Inputs: ('x',)
```

```
Outputs: ('y',)
Fittable parameters: ('amplitude', 'mean', 'stddev')
xc=462.438219 yc=377.038640

In [2]: results
Out[2]: <Gaussian1D(amplitude=512.5638896303021, mean=462.45102207881393, stddev=-0.6638566150545719)>

In [3]: type(results)
Out[3]:
<class 'astropy.modeling.functional_models.Gaussian1D'>
Name: Gaussian1D
Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('amplitude', 'mean', 'stddev')
```

Return the radial profile data points:

```
In [1]: results = plots.radial_profile(462, 377, data, genplot=False)
                  yc=377.038640
xc=462.438220
# here, results is a tuple of the radius and the flux arrays
In [2]: type(results)
Out[2]: tuple
In [3]: results
Out[3]:
(array([ 0.43991986,  0.56310764,  1.05652729,  1.11346785,  1.12730166,
        1.18083435, 1.4387386, 1.56225828, 1.72993907, 1.77404857,
        1.83394967, 1.8756147, 2.00971898, 2.0402282, 2.08520709,
        2.11462747, 2.43216151, 2.43852579, 2.49490037, 2.50720797,
        2.56207175, 2.56811411, 2.62090222, 2.65022406, 2.73622589,
        2.76432473, 2.99360832, 3.0141751, 3.07007625, 3.09013412,
        3.12919301, 3.17820187, 3.22639932, 3.27395339, 3.29213154,
        3.34795643, 3.36181609, 3.41650254, 3.43843675, 3.56198995,
        3.57009352, 3.59167466, 3.68924014, 3.71012829, 3.83595742,
        3.89592694, 3.91565741, 3.95831886, 3.97442453, 3.98552521,
        3.9971748 , 4.00099637 , 4.0623451 , 4.06610542 , 4.0775248 ,
        4.10394097, 4.21436241, 4.25811375, 4.28708374, 4.33010037,
        4.43838783, 4.53773166, 4.541146 , 4.55813187, 4.56194401, 4.58853854, 4.63205502, 4.65159003, 4.66197958, 4.67852677,
        4.68183843, 4.71753044, 4.71757631, 4.78260702, 4.85229095,
        4.88403989, 4.96555878, 4.98067583, 4.99306443, 4.99658806,
        5.05766026, 5.06986075, 5.16561429, 5.20137031, 5.2398823,
        5.24535309, 5.27513495, 5.30395753, 5.32716192, 5.33548947,
        5.37876614, 5.3848761, 5.43835691, 5.43870338, 5.48116519,
        5.52253984, 5.52811091, 5.53651564, 5.56191459, 5.58370969,
        5.59757142, 5.64425498, 5.65248702, 5.65793014, 5.78110428,
        5.80777797, 5.89748546, 5.92363512, 5.94896363, 5.97744528,
        5.98777194, 6.00070036, 6.03626122, 6.04170629, 6.05451954,
        6.06471496, 6.09265553, 6.09993812, 6.10748513, 6.13239687,
        6.16254603, 6.17042707, 6.19224411, 6.20754751, 6.22957178,
        6.23733343, 6.30103604, 6.33772298, 6.43833558, 6.44070886,
        6.48849245, 6.50959949, 6.51230262, 6.52146032, 6.5595647,
        6.56189413, 6.63183044, 6.64347305, 6.65679268, 6.71458743,
        6.72804634, 6.73034962, 6.73980232, 6.75327507, 6.77383526,
        6.79689127, 6.82830694, 6.84864187, 6.87117266, 6.87342797,
        6.8817999 , 6.94435706, 6.9488506 , 6.97513961, 6.98399121,
        7.01080949, 7.08663012, 7.10837617, 7.11926989, 7.13440215,
```

```
7.19907049, 7.23120275, 7.3613401, 7.37600509, 7.41364442,
       7.41776616, 7.43206628, 7.45308634, 7.49419535, 7.50475127,
       7.50650756, 7.55930201, 7.56802554, 7.60008443, 7.66481157,
       7.70503555, 7.76414132, 7.81964293, 8.06920371, 8.12646314,
       8.12808509, 8.15298819, 8.17548548, 8.20966328, 8.22630274,
       8.25580581, 8.27314042, 8.32288269, 8.77430839, 8.8269951,
       8.83372905, 8.86536955, 8.91032754, 8.91751826, 9.48215209,
       9.56647781]),
array([ 408.87057495,
                      41.23228073, 91.90717316,
                                                 48.38606262,
       112.11755371,
                     64.6014328 , 361.9876709 ,
                                                  7.88528776,
        76.15605927, 92.4905777,
                                   5.74170589,
                                                  8.54299355,
                      17.17868423,
        37.25744629,
                                   41.94879532, 29.16669464,
        25.11438942,
                     41.24355316, 31.41527748,
                                                  2.35880852,
                      3.61639667,
                                   31.96870041,
                                                 47.24103928,
         2.51266503,
                                                 2.95230484,
                                   3.43679786,
         1.86882472,
                       2.25345397,
                                   10.45163536, 15.06377506,
         7.01711893,
                      4.25243187,
                     1.55962014,
                                  3.2355001, 3.58886528,
         2.06799817.
                     2.61030412, 6.15013599,
                                                 2.26734257,
         4.77823544.
         3.79847336,
                     5.18475103, 2.02961087, 1.86825836,
         2.26850033,
                      1.98072493, 2.40412855, 2.35658216,
         2.2638216 ,
                      1.48555958, 2.15530491,
                                                   1.40320516,
         2.42260337,
                      3.59516048,
                                    1.49309242,
                                                  2.70001984,
         1.35936797.
                      2.50372696.
                                    1.99834633.
                                                  2.1075139 .
         2.10088921.
                      3.91031456,
                                    1.40116227,
                                                   1.58724546.
                                   2.86458731,
         1.64244962,
                       4.27553177,
                                                   2.07594514,
         1.24715221,
                       1.55571783,
                                    3.28257489,
                                                   1.08224833,
                       1.28673184,
                                     2.22391272,
         1.99108934.
                                                   2.01411462.
         1.27933741,
                       2.57424259,
                                     2.27977562,
                                                   1.34119225,
                     2.04145074,
                                   2.27879167,
         2.46366167,
                                                   3.32902098,
         2.0256803 ,
                     3.04667783.
                                                 2.71672273.
                                  3.214293 ,
         1.18290937,
                     3.39013147, 2.61141396,
                                                   1.24552131,
                                   1.065956 ,
                                                 2.0110569 ,
         2.7109127 ,
                     1.20734 ,
         2.63785267,
                     2.08804011, 1.23607028, 1.53105474,
                     0.92856985, 1.70498252,
                                                  0.98702717,
         2.9585526 ,
         3.00484014,
                     2.96310997,
                                    1.10799265,
                                                   1.02301562,
                                    1.1307373 ,
         2.59040713.
                       1.55507016,
                                                   1.46614468,
         3.7729485 ,
                      0.8989926 ,
                                    1.81300449,
                                                   1.49930847,
                      3.58096623,
                                    1.45315814,
         0.97070342,
                                                   1.37846851,
         1.22037327,
                       2.02710581,
                                     3.06499743,
                                                   1.60018504,
                       1.34511912,
                                     1.04039967,
                                                   0.94602752,
         3.15293145.
         1.5991565 ,
                       1.11648059,
                                     0.90265507,
                                                   1.25119698,
                       1.331002 ,
                                   1.26167858,
         1.32048595,
                                                   0.81102282,
                                                   1.41574192,
         0.99124312,
                      0.76625013,
                                     1.42264056,
         1.67775941,
                       1.15894651, 1.19685972,
                                                  0.99676919,
         1.16761708,
                       1.20492256,
                                   1.09948123,
                                                   1.0989542 ,
         0.92135239,
                       0.89912277,
                                   1.15777898,
                                                   1.07870626,
                       1.06859183,
                                     0.77524334,
                                                   1.4281857,
         1.32945871.
         1.05790067,
                       1.08861005,
                                   1.03711545,
                                                  1.00277674,
                                                   0.875655 ,
         1.11795783.
                       1.04079187,
                                    1.77855933.
                                    1.2846061 ,
         1.70616186.
                       0.95955884,
                                                   0.9819802,
         1.09096873,
                       1.12618971,
                                     2.52278042,
                                                   1.14947557,
         2.55132389,
                       1.16845107,
                                    1.0366509 ,
                                                   1.03310716,
         0.76811701,
                       0.98454052,
                                     1.38449657,
                                                   1.41319823,
         1.30402267,
                       1.26531458,
                                     0.88282102,
                                                   1.33250594,
         0.86149669,
                       1.13119161,
                                     0.89653128,
                                                   1.47101414,
                       2.37812138.
                                                   1.3075676 ,
         2.82045436.
                                     0.82307637.
         1.45813155,
                      1.30278611,
                                   1.60565269,
                                                   1.01857305], dtype=float32))
```

Return the curve of growth points:

```
In [1]: results = plots.curve_of_growth(462, 377, data, genplot=False)
xc=462.438220
                   vc=377.038640
at (x,y)=462,377
radii:[1 2 3 4 5 6 7 8]
flux: [406.65712375514534, 1288.8955810496341, 1634.0235081082126, 1684.5579429185905, 1718.118845192796,
→ 1785.265260722455, 1801.8561084128257, 1823.21222063562]
In [2]: type(results)
Out[2]: tuple
In [3]: results
Out[3]:
(array([1, 2, 3, 4, 5, 6, 7, 8]),
[406.65712375514534,
 1288.8955810496341,
 1634.0235081082126,
  1684.5579429185905,
 1718.118845192796,
 1785.265260722455,
 1801.8561084128257,
 1823.21222063562])
# the typle can be separated into it's parts
radius, flux = results
```

Return the histogram information as a tuple of values and bin edges:

```
In [1]: counts, bins = plots.histogram(462, 377, data, genplot=False)
In [2]: counts
Out[2]:
           7,
                                            2,
array([372,
              1, 1, 1,
                          0, 1,
                                    3, 1,
                                                1,
                                                    2,
                                                        0.
                                    0,
        0,
           0.
               1, 0, 0, 1, 0,
                                        0, 2,
                                                0, 0,
                                                        0.
          1, 0, 0, 0,
        0,
                          0, 0,
                                   0, 0, 0,
                                               0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                                         0.
        0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
        0, 0, 0, 0, 0, 0, 0,
In Γ31: bins
Out [3]:
array()[ 0.58091092, 4.66380756, 8.7467042, 12.82960084,
        16.91249748, 20.99539412, 25.07829076, 29.1611874,
        33.24408404, 37.32698068, 41.40987732, 45.49277396,
        49.5756706, 53.65856725, 57.74146389, 61.82436053,
        65.90725717, 69.99015381, 74.07305045, 78.15594709,
        82.23884373, 86.32174037, 90.40463701, 94.48753365,
        98.57043029, 102.65332693, 106.73622357, 110.81912021,
       114.90201685, 118.98491349, 123.06781013, 127.15070677,
       131.23360341, 135.31650005, 139.39939669, 143.48229333,
       147.56518997, 151.64808661, 155.73098325, 159.81387989,
       163.89677653, 167.97967317, 172.06256981, 176.14546645,
       180.22836309, 184.31125973, 188.39415637, 192.47705302,
       196.55994966, 200.6428463, 204.72574294, 208.80863958,
       212.89153622, 216.97443286, 221.0573295, 225.14022614,
```

```
229.22312278, 233.30601942, 237.38891606, 241.4718127, 245.55470934, 249.63760598, 253.72050262, 257.80339926, 261.8862959, 265.96919254, 270.05208918, 274.13498582, 278.21788246, 282.3007791, 286.38367574, 290.46657238, 294.54946902, 298.63236566, 302.7152623, 306.79815894, 310.88105558, 314.96395222, 319.04684886, 323.1297455, 327.21264215, 331.29553879, 335.37843543, 339.46133207, 343.54422871, 347.62712535, 351.71002199, 355.79291863, 359.87581527, 363.95871191, 368.04160855, 372.12450519, 376.20740183, 380.29029847, 384.37319511, 388.45609175, 392.53898839, 396.62188503, 400.70478167, 404.78767831, 408.87057495])
```

CHAPTER 9

Software Dependencies

- Astropy (for some analysis functions)
- photutils (for photometry)
- matplotlib (for plotting)
- DS9 (image display optional) * XPA: https://github.com/ericmandel/xpa
- Ginga (image display optional)

```
astropy >= 1.0
python >= 2.7
numpy >= 1.7.0
```

photutils > 0.2

This must be installed to enable the photometry options for imexam() but it is not required

Ginga

This must be installed in order to use the Ginga displays instead of DS9. Windows users who install from source should also install Ginga if they wish to use an image viewer since the DS9 and XPA compiles will be disabled. It's possible to compile and install the XPA and DS9 from source, but not with typical default software.

Using ginga has the advantage that the imexam() loop is now event driven.

You can issue the viewer.imexam() command to print out the available examination command keys. The user can then press the "i" key while the mouse is in the graphics window, all subsequent key-presses will be grabbed without blocking your terminal command line. If you wish to turn of the imexam keys you can press either the "i" key a second time or the "q" key. A notification message will appear on screen that imexam mode has either started or stopped.

If you are using the Ginga HTML5 widget under python3 in the Jupyter notebook you should also install Pillow to get the correct image viewing.

IRAF imexamine capabilities

These are the capabilities of the IRAF version of the imexam task, called with **imexamine [input [frame]]**, which lives in images.tv.imexamine. The following are imexamines input options:

- **input** is an optional list of images to be examined. If specified, images are examined in turn, displaying them automatically. If no images are specified the images currently loaded into the image display are examined.
- **output** contains the rootname for output images created with the "t" key. If no name is specified then the name of the input image is used. A three digit number is appended to the rootname, such as ".001", starting with 1 until no image is found with that name. Successive output images are numbered sequentially
- **ncoutput** and **nloutput** are the size of the output image created when the "t" key is pressed, where the output image is centered on the cursor location
- frame specifies which frame should be used
- **logfile** is the filename which records output of the commands producing text, if no filename is given no logfile will be produced
- **defkey** is the default key for cursor x-y input list. This key is applied to input cursor lists which do not have a cursor key specified. It is used to repetitively apply a cursor command to a list of positions typically obtained from another task
- allframes, if true then images from an input list are loaded by cycling through the available frames, otherwise the last frame loaded is reused
- **nframes** is then number of display frames to use when automatically loading images. It should not exceed the number of frames provided by the display device. If the number of frames is set to 0 then the task will query the display device to determine how many frames are currently allocated. New frames may be allocated during program execution by displaying images with the 'd' key.
- **ncstat, nlstat** correlate with the statistics command which computes values from a box centered on the specified cursor position with the number of columns and lines given by these parameters.

The following is a list of available cursor and colon commands while imexamine is active in the display, many but not all are available in this python imexam package:

-- IMEXAMINE COMMANDS --CURSOR KEY COMMAND SUMMARY ? Help x Coordinates h Histogram p Previous frame a Aperture Sum i Image cursor q Quit y Set origin b Box coords j Line gauss fit r Radial plot z Print grid c Column plot k Col gauss fit s Surface plot , Quick phot d Load display l Line plot t Output image . Quick prof fit e Contour plot m Statistics u Vector plot f Redraw n Next frame v Vector plot g Graphics cursor o Overplot w Toggle logfile

COLON COMMAND SUMMARY

allframes angh angv autoredraw autoscale background banner beta boundary box	ceiling center constant dashpat defkey eparam fill fitplot fittype floor	iterations label logfile logx logy magzero majrx majry marker minrx	naverage nbins ncolumns ncontours ncoutput ncstat nhi nlines nloutput nlstat	pointmode radius round rplot select szmarker ticklabel title top_closed unlearn	width x xformat xlabel xorder y yformat ylabel yorder z1,z2
box buffer	floor interval	minrx minry	nlstat output	unlearn wcs	z1,z2 zero

OUTPUT OF 'a' AND 'r' KEYS

The 'a' key and logfile output has column labels and each object has one line of measurements in the logfile and two lines on the terminal. The 'r' key shows only the second line on the status line and the information from the first line is in the graph title. The first line contains the x and y center coordinates and optional world coordinates. The second line contains the aperture magnitude and flux, the estimated background sky, the profile fit peak, the ellipticity and position angle from the moment analysis, and four estimates of the profile width. The four estimates are from the moment analysis, the full-width enclosing half the flux, the profile fit, and a direct estimate of the full width at half-maximum.

CURSOR KEY COMMANDS

```
Print help
         Aperture radial photometry measurement (see above for output)
b
         Box coordinates for two cursor positions - c1 c2 l1 l2
С
         Column plot
d
         Load the image display
         Contour plot
e
f
         Redraw the last graph
         Graphics cursor
g
         Histogram plot
h
i
         Image cursor
         Fit 1D gaussian to image lines
i
         Fit 1D gaussian to image columns
k
```

1

Line plot

```
Statistics
            image[section] npixels mean median stddev min max
         Next frame or image
n
         Overplot
0
         Previous frame or image
р
         Ouit
q
         Radial profile plot (see above for output)
r
s
t.
         Output image centered on cursor (parameters output, ncoutput, nloutput)
         Centered vector plot from two cursor positions
u
ν
         Vector plot between two cursor positions
W
         Toggle write to logfile
         Print coordinates
            col line pixval [xorign yorigin dx dy r theta]
         Set origin for relative positions
         Print grid of pixel values - 10 x 10 grid
z
         Quick profile photometry measurement (Gaussian or Moffat)
         Quick radial profile plot and fit (Gaussian or Moffat)
                                COLON COMMANDS
Explicit image coordinates may be entered using the colon command syntax:
        :column line key
where column and line are the image coordinates and the key is one
of the cursor keys. A special syntax for line or column plots is also
available as :c# or :l# where # is a column or line and no space is
allowed.
Other colon commands set or show parameters governing the plots and other
features of the task. Each graph type has it's own set of parameters.
When a parameter applies to more than one graph the current graph is assumed.
If the current graph is not applicable then a warning is given. The
"eparam" and "unlearn" commands may be used to change many parameters and
without an argument the current graph parameters are modified while with
the graph key as an argument the appropriate parameter set is modified.
In the list below the graph key(s) to which a parameter applies are shown.
allframes
                        Cycle through all display frames to display images
                        Horizontal angle for surface plot
angh
            s
                        Vertical angle for surface plot
angv
            S
           cehlrsuv.
                        Automatically redraw graph after colon command?
autoredraw
autoscale
                        Adjust number of histogram bins to avoid aliasing
           h
                        Draw axes in surface plot?
axes
                        Subtract background for radial plot and photometry?
background jkr.
banner
            cehjklrsuv. Include standard banner on plots?
beta
            ar
                              Moffat beta parameter (INDEF to fit or value to fix)
boundary
            uν
                        Boundary extension type for vector plots
                       Draw box around graph?
hox
            cehjklruv.
buffer
                        Buffer distance for background subtraction
            r.
                        Data ceiling for contour and surface plots
ceiling
            es
center
                        Find center for radial plot and photometry?
            ikr.
                        Constant value for boundry extension in vector plots
constant
            uν
dashpat
                        Dash pattern for contour plot
            е
eparam
            cehjklrsuv. Edit parameters
                        Fill viewport vs enforce unity aspect ratio?
fill
fitplot
                        Overplot profile fit on data?
```

```
fittype
                        Profile fitting type (gaussian|moffat)
floor
                        Data floor for contour and surface plots
            es
interval
                        Contour interval (0 for default)
            e
iterations ar
                        Iterations on fitting radius
                        Draw axis labels for contour plot?
label
logfile
                        Log file name
logx
            chjklruv.
                        Plot x axis logrithmically?
            chjklruv.
                        Plot y axis logrithmically?
logy
magzero
            r.
                        Magnitude zero for photometry
majrx
            cehjklruv.
                        Number of major tick marks on x axis
                        Number of major tick marks on y axis
majry
            cehjklruv.
marker
            chjklruv.
                        Marker type for graph
minrx
            cehjklruv.
                        Number of minor tick marks on x axis
            cehjklruv.
                        Number of minor tick marks on y axis
minrv
            cjkluv
                        Number of columns, lines, vectors to average
naverage
nbins
            h
                        Number of histogram bins
                        Number of columns in contour, histogram, or surface plot
ncolumns
            ehs
                        Number of contours (0 for default)
ncontours
            e
                        Number of columns in output image
ncoutput
ncstat
                        Number of columns in statistics box
nhi
                        hi/low marking option for contours
nlines
            ehs
                        Number of lines in contour, histogram, or surface plot
nloutput
                        Number of lines in output image
nlstat
                        Number of lines in statistics box
                              Output image root name
output
                        Plot points instead of lines?
pointmode
            chjkluv
radius
                        Radius of object aperture for radial plot and photmetry
                        Round axes to nice values?
round
            cehjklruv.
                        Radius to plot in 1D and radial profile plots
rplot
            jkr.
select
                        Select image or display frame
                        Initial sigma for 1D gaussian fits
sigma
            jk
            chjklruv.
                        Size of marks for point mode
szmarker
ticklabels cehjklruv. Label ticks?
title
            cehjklrsuv. Optional title for graph
top_closed h
                        Close last bin of histogram
unlearn
            cehjklrsuv. Unlearn parameters to default values
wcs
                        World coordinate system for axis labels and readback
width
            jkr.
                        Width of background region
                        Range of x to be plotted (no values for autoscaling)
x [min max] chjklruv.
xformat
                               Coordinate format for column world coordinates
xlabel
            cehjklrsuv. Optional label for x axis
xorder
            jkr.
                        X order of surface for background subtraction
y [min max] chjklruv.
                        Range of y to be plotted (no values for autoscaling)
                               Coordinate format for line world coordinates
yformat
ylabel
            cehjklrsuv. Optional label for y axis
                        Y order of surface for background subtraction
yorder
            r.
z1
            h
                        Lower intensity value limit of histogram
72
            h
                        Upper intensity value limit of histogram
zero
            e
                        Zero level for contour plot
```

Comparison with the IRAF verison of imexamine

The following is a comparison of the outputs, returned values and user options for this module versus imexamine in IRAF

- All plot types are replicated between the codes, though they may be rendered differently. The images below are representative of the basic plots from each package.
- The same user plot options, as in the rimexam, cimexam etc. type IRAF param files are replicated to their useful extent using python dictionaries for each imexamine key.
- Colormaps and point styles for the matplotlib plots may be changed by the user through the imexam key default dictionaries
- In imexam, once the plot is displayed on the screen, you can zoom in and out using the controls in the plotting window.
- imexam allows users to register their own analysis functions
- imexam does not attempt to replicate the colon command interaction, if users wish to change the plot settings they should exit the imexam() method, reset the options and call it again.
- all of the imexam() functions in imexam can be called by themselves if you supply an x,y coordinate

How do the numerical results compare with the IRAF version? This is a little harder to judge with cursor centering. Visual comparison of the resulting plots shows good agreement, as well as some random checks of the photometry and statistical return methods.

11.1 Statistical returns

```
IRAF "m" key:

-> imexam

# SECTION NPIX MEAN MEDIAN STDDEV MIN MAX

[584:588,697:701] 25 46533. 51314. 10281. 21215. 56186.
```

imexam "m" key (with cursor location flooring):

```
[583:588,695:700] median: 51458.000000
```

imexam only shows one statistic at a time. The same function call may be used to show the results from *any* valid numpy function, it will return an attribute error for invalid functions. For example, if you edit the defaults dictionary for the "m" key:

```
viewer.mimexam()
    {'function': ['report_stat'],
        'region_size': [5, 'region size in pixels to use'],
        'stat': ['median',
        'which numpy stat to return [median,min,max...must map to a numpy func]']}
viewer.exam.report_stat_pars["stat"][0] = "max" <---- will report np.max for the array
        [584:589,695:700] amax: 56186.000000
viewer.exam.report_stat_pars["stat"][0] = "mean" <---- will report np.mean for the array
        [583:588,694:699] mean: 45412.878906
viewer.exam.report_stat_pars["stat"][0]="std"
        [583:588,694:699] std: 10706.179688</pre>
```

11.2 Aperture Photometry

IRAF "a" key:

```
# COL LINE COORDINATES

# R MAG FLUX SKY PEAK E PA BETA ENCLOSED MOFFAT DIRECT

585.81 698.16 585.81 698.16

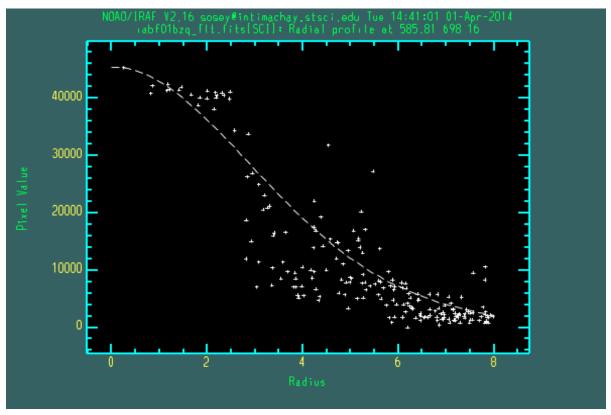
17.51 8.86 2.858E6 10840. 45443. 0.03 -64 8.32 5.23 7.10 5.83
```

imexam "a" key (using the defaults):

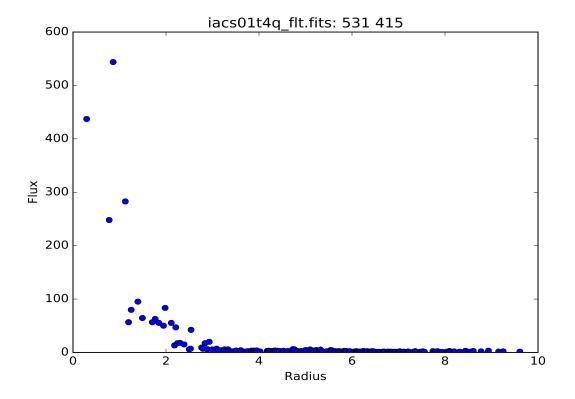
```
xc=586.138728 yc=697.990516
x y radius flux mag(zpt=25.00) sky fwhm
586.14 697.99 5 1508664.63 9.55 11160.89 6.03
```

The "xc" and "yc" returns are the gaussian fit centers, as well as the FWHM from the fit. If we set the values to be similar to what IRAF.imexamine used, we can see the numbers are closer, the radius for the apertures are floored though before being sent to photutil:

```
viewer.aimexam()


{'center': [True, 'Center the object location using a 2d gaussian fit'],
  'function': ['aperphot'],
  'radius': [5, 'Radius of aperture for star flux'],
  'skyrad': [15, 'Distance to start sky annulus is pixels'],
  'subsky': [True, 'Subtract a sky background?'],
  'width': [5, 'Width of sky annulus in pixels'],
  'zmag': [25.0, 'zeropoint for the magnitude calculation']}
```

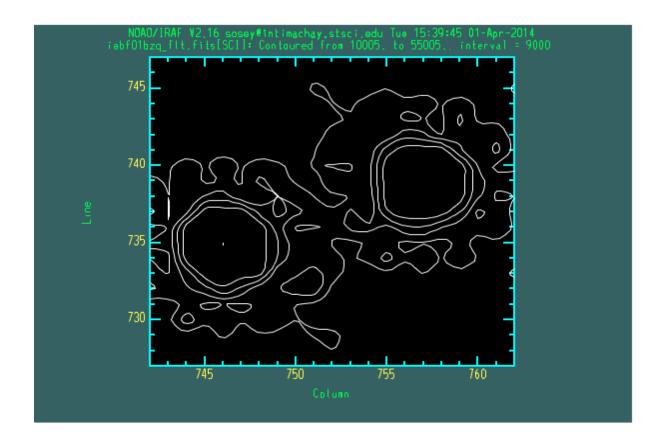
```
viewer.exam.aperphot_pars["radius"][0]=17.5

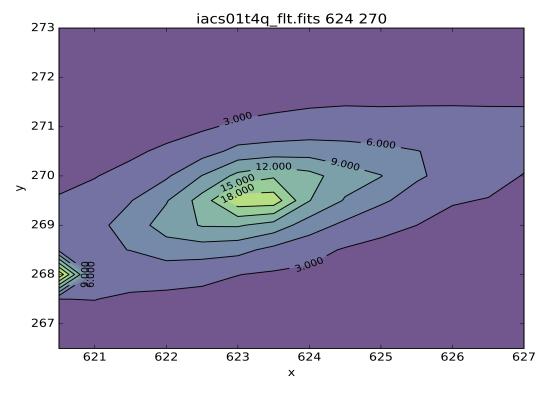

xc=586.213790    yc=697.501845
x         y    radius    flux    mag(zpt=25.00)    sky         fwhm
586.21    697.50    17    2565167.11    8.98    11162.83    6.02
```

11.3 Radial Profile Plot

The fit profile of the star out to the specified radius. Users can look at the fit profile of the star using the 1D gaussian option. By default, imexam prints the data point values to the screen.

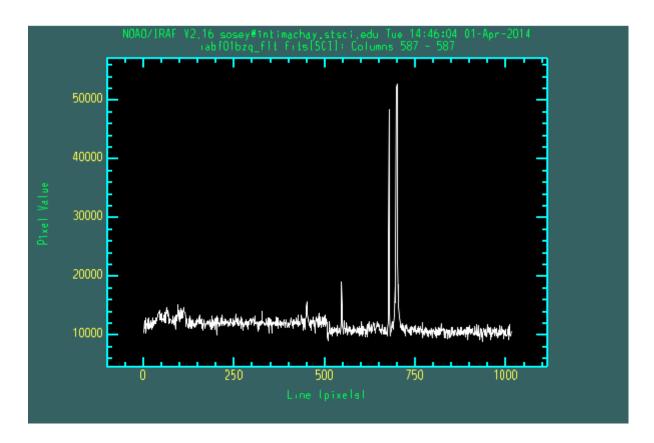
11.3. Radial Profile Plot

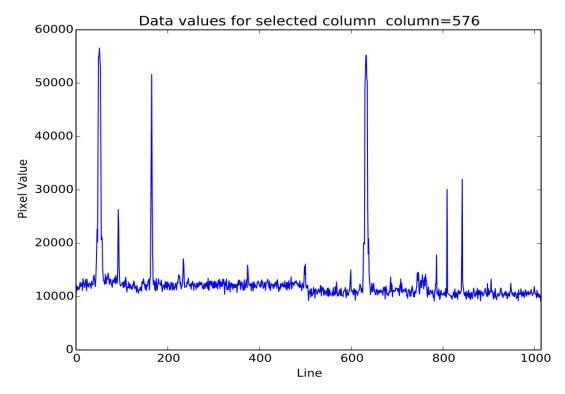

imexam prints the plotted data to the screen


```
pressed: r
xc=655.659205    yc=698.937124
Sky per pixel: 0.7021602984249302 using(rad=10.0->15.0)

at (x,y)=655,698
radii:[0 1 2 3 4 5 6 7 8 9]
flux:[ 74.23025852 153.66757441 60.17693806 9.7988813 7.10537578
    9.08464076 3.1673068 2.92777784 0.26435121 0.18440688]
```

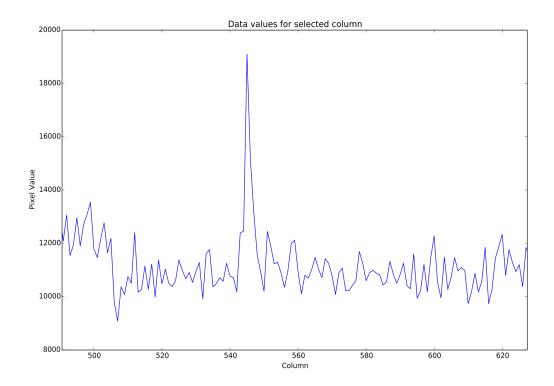
11.4 Contour plot

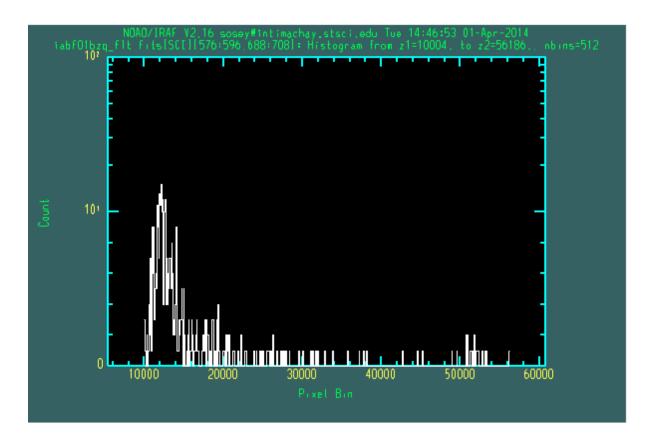

Note the added availability in this package for labeling the contours

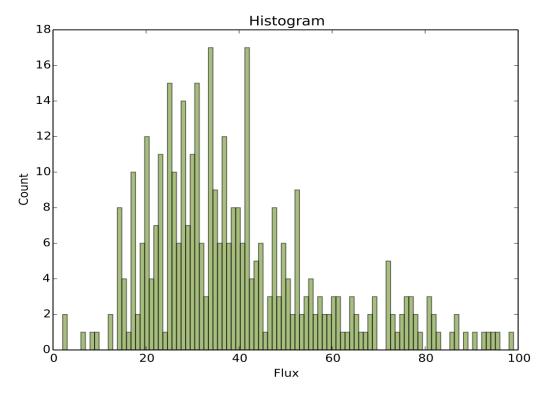


11.4. Contour plot

11.5 Column and Line plots

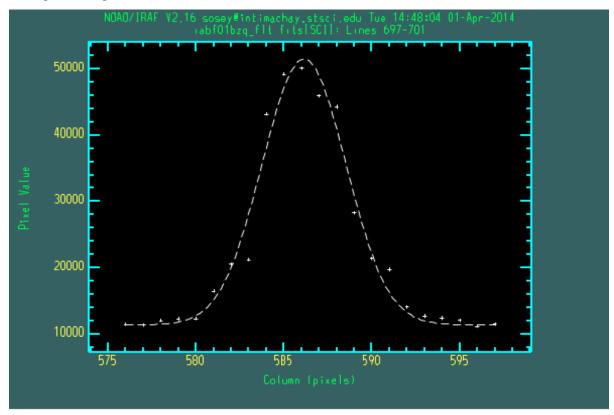


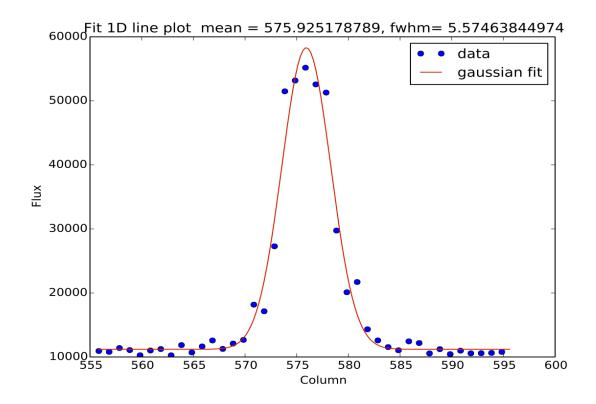



Keep in mind that python is 0-index and IRAF returns 1-index arrays, so the equivalent IRAF plot of 587 is really 588:

An added benefit in the python package is that you can zoom in and out of the plots using the window controls, below is a zoomed in area of the column plot as it appears in the window:

11.6 Histogram plots

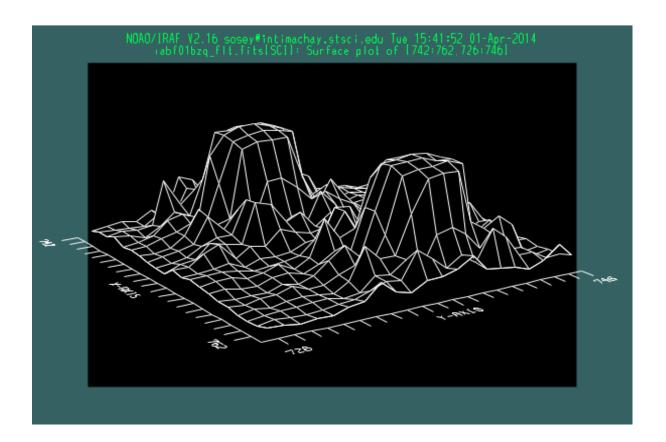


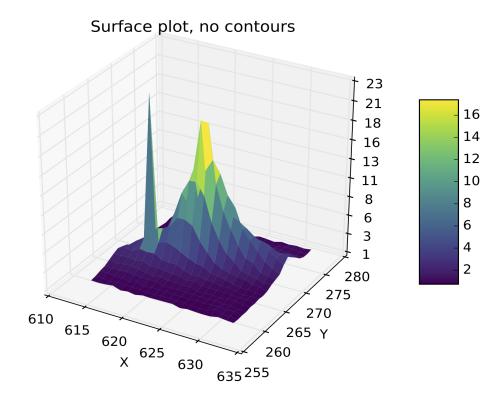

imexam prints bin information to the screen

100 bins

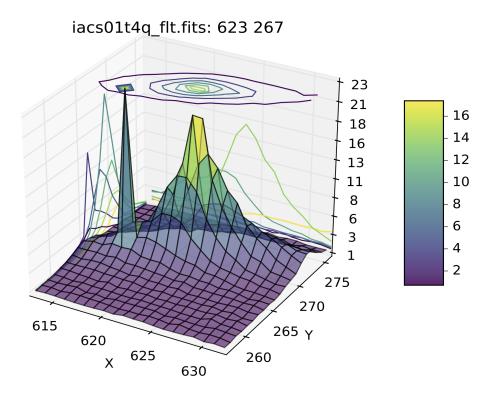
11.7 1D Gaussian plots

These plots are representative for both the column and line versions


imexam prints the fit information to the screen


```
xc=585.660034 yc=697.499370
(585,697) mean=585.900, fwhm=5.653
```

11.8 Surface plots


The default viewing angle for this package was set to that the axis are easiest to read, the user may choose a different azimuthal value as well. The most fancy imexam surface plot is displayed, the user can alter it with the available options.

11.8. Surface plots

11.8. Surface plots

Part VI Reporting Issues

If you have found a bug in imexam please report it by creating a new issue on the imexam GitHub issue tracker.

Please include an example that demonstrates the issue sufficiently so that the developers can reproduce and fix the problem. You may also be asked to provide information about your operating system and a full Python stack trace. The developers will walk you through obtaining a stack trace if it is necessary.

imexam uses a package of utilities called astropy-helpers during building and installation. If you have any build or installation issue mentioning the astropy_helpers or ah_bootstrap modules please send a report to the astropy-helpers issue tracker. If you are unsure, then it's fine to report to the main imexam issue tracker.

Part VII Contributing

Like the Astropy project, imexam is made both by and for its users. We accept contributions at all levels, spanning the gamut from fixing a typo in the documentation to developing a major new feature. We welcome contributors who will abide by the Python Software Foundation Code of Conduct.

imexam follows the same workflow and coding guidelines as Astropy. The following pages will help you get started with contributing fixes, code, or documentation (no git or GitHub experience necessary):

- How to make a code contribution
- Coding Guidelines
- Try the development version
- Developer Documentation

For the complete list of contributors please see the imexam contributors page on Github.

Part VIII Reference API

CHAPTER 12

imexam.connect Module

This is the main controlling class, it allows the user to connect to the viewer and the imexamine classes

12.1 Classes

Connect([target, path, viewer, wait_time, ...])

Connect to a display device to look at and examine images.

12.1.1 Connect

Bases: object

Connect to a display device to look at and examine images.

The control features below are a basic set that should be available in all display tools.

The class for the display tool should override them and add it's own extra features.

Parameters

target: string, optional

the viewer target name or id (default is to start a new instance of a DS9 window)

path: string, optional

absolute path to the viewers executable

viewer: string, optional

The name of the image viewer you want to use, DS9 is the default

wait_time: int, optional

The time to wait for a connection to be eastablished before quitting

Attributes

window: a pointer to an object	controls the viewers functions	
imexam: a pointer to an object	controls the imexamine functions and options	

Initialize the imexam control object.

Methods Summary

aimexam([get_name])	Show the current parameters for the 'a' key.	
alignwcs(**kwargs)		
blink(**kwargs)		
cimexam([get_name])	Show the current parameters for the 'c' key.	
clear_contour()	Clear contours on window if available.	
close()	Close the window and end connection.	
cmap(**kwargs)	Set the color map table to something else.	
colorbar(**kwargs)	Turn the colorbar on the screen on and off.	
contour(**kwargs)	Show contours on the window.	
contour_load(*args)	Load contours from a file.	
crosshair(**kwargs)	Control the current position of the crosshair in the current frame.	
cursor(**kwargs)	Move the cursor in the current frame to the specified image pixel.	
disp_header(**kwargs)	Display the header of the current image to a window.	
eimexam([get_name])	Show the current parameters for the 'e' key, returns dict.	
embed(**kwargs)		
frame(*args, **kwargs)	Move to a different frame.	
get_data()	Return a numpy array of the data in the current window.	
<pre>get_data_filename()</pre>	Return the filename for the data in the current window.	
<pre>get_frame_info()</pre>	Return explicit information about the data displayed.	
<pre>get_header(**kwargs)</pre>	Return the current fits header as a string.	
<pre>get_image()</pre>	Return the full image object, not just the numpy array.	
<pre>get_viewer_info()</pre>	Return a dictionary with information about all frames	
	with data.	
<pre>gimexam([get_name])</pre>	Show the current parameters for curve of growth plots, returns dict.	
grab()	Display a snapshop of the current image in the browser window.	
grid(*args, **kwargs)	Convenience method to turn the grid on and off.	
hideme()	Lower the precedence of the display window.	
himexam([get_name])	Show the current parameters for 'h' key, returns dict.	
imexam()	Run imexamine loop with user interaction.	
jimexam([get_name])	Show the current parameters for 1D fit line plots, returns dict.	
kimexam([get_name])	Show the current parameters for 1D fit column plots, returns dict.	
limexam([get_name])	Show the current parameters for line plots, returns dict.	
load_fits(*args, **kwargs)	Convenience function to load fits image to current frame.	
<pre>load_mef_as_cube(*args, **kwargs)</pre>	Load a Mult-Extension-Fits image one frame as a cube.	
	Continued on next page	

Table 12.2 – continued from previous page

load_mef_as_multi(*args, **kwargs)	Load a Mult-Extension-Fits image into multiple frames.
load_region(*args, **kwargs)	Load regions from a file which uses standard formatting.
load_rgb(*args, **kwargs)	Load three images into a frame, each one for a different
	color.
make_region(*args, **kwargs)	Make an input reg file with [x,y,comment] to a standard
	reg file.
mark_region_from_array(*args, **kwargs)	Mark regions on the viewer with a list of tuples as input.
match(**kwargs)	Match all other frames to the current frame.
mimexam([get_name])	Show the current parameters for statistical regions, re-
	turns dict.
nancolor(**kwargs)	Set the not-a-number (NaN) color.
panto_image(*args, **kwargs)	Convenience function to change to x,y images coordi-
	nates.
panto_wcs(*args, **kwargs)	Pan to wcs coordinates in image.
plotname([filename])	Change or show the default save plotname for imexam-
	ine.
readcursor()	Return the image coordinate postion and key pressed.
reopen()	Reopen a display window closed by the user but not ex-
	ited.
rimexam([get_name])	Show the current parameters for curve of growth plots,
	returns dict.
rotate(*args, **kwargs)	Rotate the current frame (in degrees).
save_header(*args, **kwargs)	Save the header of the current image to a file.
save_regions(*args, **kwargs)	Save the regions on the current window to a file.
save_rgb(*args, **kwargs)	Save an rgb image frame that is displayed as an MEF
a ch dat	fits file.
scale(*args, **kwargs)	Scale the image on display.
set_plot_pars([key, item, value])	Set the chosen plot parameter with the provided value.
set_region(*args, **kwargs)	Display a region using the specifications in re-
(1 (501 1 1))	gion_string.
setlog([filename, on, level])	Turn on and off logging to a logfile or the screen.
show_window_commands()	Print the available commands for the selected display
ala auma ()	window.
showme()	Raise the precedence of the display window.
showpix(*args, **kwargs) snapsave(*args, **kwargs)	Display the pixel value table, close window when done.
	Create a snap shot of the current window.
timexam([get_name]) unlearn()	Show current parameters for image cutouts, returns dict. Unlearn all the imexam parameters and reset to default.
valid_data_in_viewer()	Return True if a valid file or array is loaded.
view(*args, **kwargs)	Display numpy or nddata image array.
wimexam([get_name])	Show the current parameters for surface plots, returns
winevani([Ref"name])	dict.
zoom(*args, **kwargs)	Zoom to parameter which can be any recognized string.
zoomtofit()	Zoom the image to fit the display.
ZOOIIICOTIC()	Zoom the image to in the display.

Methods Documentation

aimexam(get_name=False)

Show the current parameters for the 'a' key.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

12.1. Classes 125

```
alignwcs(**kwargs)
     Align frames with wcs.
blink(**kwargs)
     Blink windows if available.
cimexam(get name=False)
     Show the current parameters for the 'c' key.
     Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
     parameters for that key
clear_contour()
     Clear contours on window if available.
close()
     Close the window and end connection.
cmap(**kwargs)
     Set the color map table to something else.
     Should verify with a defined list of options
colorbar(**kwargs)
     Turn the colorbar on the screen on and off.
contour(**kwargs)
     Show contours on the window.
contour_load(*args)
     Load contours from a file.
crosshair(**kwargs)
     Control the current position of the crosshair in the current frame.
     crosshair mode is turned on by default
cursor(**kwargs)
     Move the cursor in the current frame to the specified image pixel.
     it will also move selected regions
disp_header(**kwargs)
     Display the header of the current image to a window.
eimexam(get_name=False)
     Show the current parameters for the 'e' key, returns dict.
embed(**kwargs)
frame(*args, **kwargs)
     Move to a different frame.
get_data()
     Return a numpy array of the data in the current window.
get_data_filename()
     Return the filename for the data in the current window.
get_frame_info()
     Return explicit information about the data displayed.
```

get_header(**kwargs)

Return the current fits header as a string.

None is returned if there's a problem

get_image()

Return the full image object, not just the numpy array.

get_viewer_info()

Return a dictionary with information about all frames with data.

gimexam(get_name=False)

Show the current parameters for curve of growth plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

grab()

Display a snapshop of the current image in the browser window.

grid(*args, **kwargs)

Convenience method to turn the grid on and off.

grid can be flushed with many more options

hideme()

Lower the precedence of the display window.

himexam(get name=False)

Show the current parameters for 'h' key, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

imexam()

Run imexamine loop with user interaction.

At a minimum it requires a copy of the data array

jimexam(get_name=False)

Show the current parameters for 1D fit line plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

kimexam(get_name=False)

Show the current parameters for 1D fit column plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

limexam(get_name=False)

Show the current parameters for line plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

load_fits(*args, **kwargs)

Convenience function to load fits image to current frame.

load_mef_as_cube(*args, **kwargs)

Load a Mult-Extension-Fits image one frame as a cube.

load_mef_as_multi(*args, **kwargs)

Load a Mult-Extension-Fits image into multiple frames.

12.1. Classes 127

```
load_region(*args, **kwargs)
```

Load regions from a file which uses standard formatting.

load_rgb(*args, **kwargs)

Load three images into a frame, each one for a different color.

make_region(*args, **kwargs)

Make an input reg file with [x,y,comment] to a standard reg file.

the input file should contains lines with x,y,comment

mark_region_from_array(*args, **kwargs)

Mark regions on the viewer with a list of tuples as input.

match(**kwargs)

Match all other frames to the current frame.

mimexam(get_name=False)

Show the current parameters for statistical regions, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

nancolor(**kwargs)

Set the not-a-number (NaN) color.

panto_image(*args, **kwargs)

Convenience function to change to x,y images coordinates.

using ra,dec, x, y in image coord

panto_wcs(*args, **kwargs)

Pan to wcs coordinates in image.

plotname(filename=None)

Change or show the default save plotname for imexamine.

readcursor()

Return the image coordinate postion and key pressed.

in the form of x,y,str with array offset

reopen()

Reopen a display window closed by the user but not exited.

rimexam(get_name=False)

Show the current parameters for curve of growth plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

```
rotate(*args, **kwargs)
```

Rotate the current frame (in degrees).

save_header(*args, **kwargs)

Save the header of the current image to a file.

save_regions(*args, **kwargs)

Save the regions on the current window to a file.

save_rgb(*args, **kwargs)

Save an rgb image frame that is displayed as an MEF fits file.

```
scale(*args, **kwargs)
     Scale the image on display.
     The default zscale is the most widely used option
set_plot_pars(key=None, item=None, value=None)
     Set the chosen plot parameter with the provided value.
         Parameters
             key: String
                The value of the option key, should be a single letter or number
             item: string
                The value of the parameter in the dictionary
             value: float, string, int, bool
                What the parameters value should be set to
     Examples
     set_plot_par('j','func','MexicanHat1D')
     where j is the key value during imexam func is the parameter you want to edit MexicanHat1D is the name
     of the astropy function to use
set_region(*args, **kwargs)
     Display a region using the specifications in region_string.
setlog(filename=None, on=True, level=20)
     Turn on and off logging to a logfile or the screen.
         Parameters
             filename: str, optional
                Name of the output file to record log information
             on: bool, optional
                True by default, turn the logging on or off
             level: logging class, optional
                set the level for logging messages, turn off screen messages by setting to log-
                ging.CRITICAL
show_window_commands()
     Print the available commands for the selected display window.
showme()
     Raise the precedence of the display window.
showpix(*args, **kwargs)
     Display the pixel value table, close window when done.
snapsave(*args, **kwargs)
```

12.1. Classes 129

save in the specified format. If no format is specified the filename extension is used

Create a snap shot of the current window.

timexam(get_name=False)

Show current parameters for image cutouts, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

unlearn()

Unlearn all the imexam parameters and reset to default.

valid_data_in_viewer()

Return True if a valid file or array is loaded.

view(*args, **kwargs)

Display numpy or nddata image array.

If an astropy NDData object is passed without a reference to the data one will be added. I haven't tested this yet for multiarray data

wimexam(get_name=False)

Show the current parameters for surface plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting parameters for that key

zoom(*args, **kwargs)

Zoom to parameter which can be any recognized string.

zoomtofit()

Zoom the image to fit the display.

CHAPTER 13

imexam.imexamine Module

Licensed under a 3-clause BSD style license - see LICENSE.rst.

This class implements IRAF/imexamine type capabilities for providing powerful diagnostic quick-look tools.

However, the power of this python tool is that it is essentially a library of plotting and analysis routines which can be directed towards any viewer. It can also be used without connecting to any viewer since the calls take only data,x,y information. This means that given a data array and a list of x,y positions you can creates plots without havin to interact with the viewers.

Users can also register a custom function with the class and have it available for use in either case.

The plots which are made are fully customizable

13.1 Classes

<pre>Imexamine()</pre>	The imexamine class controls plotting and analysis func-
	tions.

13.1.1 Imexamine

class imexam.imexamine.Imexamine

Bases: object

The imexamine class controls plotting and analysis functions.

do imexamine like routines on the current frame.

read the returned cursor key value to decide what to do

region_size is the default radius or side of the square for stat info

Methods Summary

aper_phot(x, y[, data])	Perform aperture photometry.
close()	For use with the Imexamine object standalone.
column_fit(x, y[, data, form, genplot, fig])	Compute the 1d fit to the column of data.
contour(x, y[, data, fig])	plot contours in a region around the specified location.
<pre>curve_of_growth(x, y[, data, genplot, fig])</pre>	Display a curve of growth plot.
cutout(x, y[, data, size, fig])	Make a fits cutout around the pointer location without
	wcs.
do_option(x, y, key)	Run the imexam option.
gauss_center(x, y[, data, delta])	Return the 2d gaussian fit center of the data.
get_options()	Return the imexam options as a key list.
<pre>get_plot_name()</pre>	return the default plot name.
histogram(x, y[, data, genplot, fig])	Calulate a histogram of the data values.
line_fit(x, y[, data, form, genplot, fig])	compute the 1D fit to the line of data using the specified
	form.
new_plot_window(x, y[, data])	make the next plot in a new plot window.
option_descrip(key[, field])	Return the looked up dictionary of options.
plot_column(x, y[, data, fig])	column plot of data at point y.
plot_line(x, y[, data, fig])	line plot of data at point x.
print_options()	Print the imexam options to screen.
radial_profile(x, y[, data, form, genplot, fig])	Display the radial profile plot (intensity vs radius) for
-	the object.
register(user_funcs)	register a new imexamine function made by the user as
18 18 18 18 (881 2 881)	an option.
report_stat(x, y[, data])	report the statisic of values in a box with side re-
	gion_size.
reset_defpars()	set all pars to their defaults.
save([filename, fig])	Save to file the figure that's currently displayed.
save_figure(x, y[, data, fig])	Save to file the figure that's currently displayed.
set_aper_phot_pars([user_dict])	the user may supply a dictionary of par settings.
set_colplot_pars()	set parameters for column plots.
set_column_fit_pars()	set parameters for 1D line fit plots.
set_contour_pars()	set parameters for contour plots.
set_curve_pars()	set parameters for curve of growth plots.
set_cutout_pars()	set parameters for cutout images.
set_data([data, dtype])	initialize the data that imexamine uses.
set_histogram_pars()	set parameters for histogram plots.
set_line_fit_pars()	set parameters for 1D line fit plots.
set_lineplot_pars()	set parameters for line plots.
set_option_funcs()	Define the dictionary which maps imexam keys to their
	functions.
set_plot_name([filename])	set the default plot name for the "s" key.
set_radial_pars()	set parameters for radial profile plots.
set_surface_pars()	set parameters for surface plots.
setlog([filename, on, level])	Turn on and off logging to a logfile or the screen.
show_fit_models()	Print the available astropy models for plot fits.
show_xy_coords(x, y[, data])	print the x,y,value to the screen.
showplt()	Show the plot.
surface(x, y[, data, fig])	plot a surface around the specified location.
unlearn_all()	reset the default parameters for all functions.
with the second of the second	Total the default parameters for an innerious.

Methods Documentation

```
aper_phot(x, y, data=None)
     Perform aperture photometry.
     uses photutils functions, photutils must be available
          Parameters
              x: int
                The x location of the object
              y: int
                The y location of the object
              data: numpy array
                The data array to work on
close()
     For use with the Imexamine object standalone.
column_fit(x, y, data=None, form=None, genplot=True, fig=None)
     Compute the 1d fit to the column of data.
          Parameters
              x: int
                The x location of the object
              y: int
                The y location of the object
              data: numpy array
                The data array to work on
              form: string
                This is the functional form specified in the column fit parameters
              genplot: int
                produce the plot or return the fit model
              fig: figure name for redirect
                Used for interaction with the ginga GUI
     Notes
     delta is the range of data values to use around the x,y location
     The background is currently ignored
     if centering is True, then the center is fit with a 2d gaussian, but this is currently not done for Polynomial1D
contour(x, y, data=None, fig=None)
     plot contours in a region around the specified location.
          Parameters
              x: int
                The x location of the object
```

13.1. Classes 133

```
y: int
                The y location of the object
             data: numpy array
                The data array to work on
             fig: figure for redirect
                Used for interaction with the ginga GUI
curve_of_growth(x, y, data=None, genplot=True, fig=None)
     Display a curve of growth plot.
         Parameters
             x: int
                The x location of the object
             y: int
                The y location of the object
             data: numpy array
                The data array to work on
             fig: figure name for redirect
                Used for interaction with the ginga GUI
     Notes
     the object photometry is taken from photutils
cutout(x, y, data=None, size=None, fig=None)
     Make a fits cutout around the pointer location without wcs.
         Parameters
             x: int
                The x location of the object
             y: int
                The y location of the object
             data: numpy array
                The data array to work on
             size: int
                The radius of the cutout region
             fig: figure for redirect
                Used for interaction with the ginga GUI
do_option(x, y, key)
     Run the imexam option.
         Parameters
```

x: int

The x location of the cursor or data point

y: int

The y location of the cursor or data point

key: string

The key which was pressed

$gauss_center(x, y, data=None, delta=10)$

Return the 2d gaussian fit center of the data.

Parameters

x: int

The x location of the object

y: int

The y location of the object

data: numpy array

The data array to work on

delta: int

The range of data values (bounding box) to use around the x,y location for calculating the center

get_options()

Return the imexam options as a key list.

get_plot_name()

return the default plot name.

histogram(x, y, data=None, genplot=True, fig=None)

Calulate a histogram of the data values.

Parameters

x: int, required

The x location of the object

y: int, required

The y location of the object

data: numpy array, optional

The data array to work on

genplot: boolean, optional

If false, returns the hist, bin_edges tuple

fig: figure name for redirect

Used for interaction with the ginga GUI

Notes

This functional originally used the pylab histogram routine for plotting. In order to accommodate returning just the histogram data, this was changed to the numpy histogram, with a subsequent plot if genplot is True.

Does not yet support numpy v1.11 strings for bin estimation.

13.1. Classes 135

```
line_fit(x, y, data=None, form=None, genplot=True, fig=None) compute the 1D fit to the line of data using the specified form.
```

Parameters

x: int

The x location of the object

y: int

The y location of the object

data: numpy array

The data array to work on

form: string

This is the functional form specified in the line fit parameters Currently Gaussian1D, Moffat1D, MexicanHat1D, Polynomial1D

genplot: bool

produce the plot or return the fit

fig: figure for redirect

Used for interaction with the ginga GUI

Notes

The background is currently ignored

If centering is True in the parameter set, then the center is fit with a 2d gaussian, not performed for Polynomial1D

 $new_plot_window(x, y, data=None)$

make the next plot in a new plot window.

Notes

x,y, data, are not used here, but the calls are setup to take them for all imexam options. Is there a better way to do the calls in general? Once the new plotting window is open all plots will be directed towards it. The old window cannot be used again.

```
option_descrip(key, field=1)
```

Return the looked up dictionary of options.

Parameters

key: string

The key which was pressed, it relates to the function to call

field: int

This tells where in the option dictionary the function name can be found

plot_column(x, y, data=None, fig=None)
 column plot of data at point y.

Parameters

x: int

```
The x location of the object
              y: int
                The y location of the object
              data: numpy array
                The data array to work on
              fig: figure name for redirect
                Used for interaction with the ginga GUI
plot_line(x, y, data=None, fig=None)
     line plot of data at point x.
          Parameters
              x: int
                The x location of the object
              y: int
                The y location of the object
              data: numpy array
                The data array to work on
              fig: figure object for redirect
                Used for interaction with the ginga GUI
print_options()
     Print the imexam options to screen.
radial_profile(x, y, data=None, form=None, genplot=True, fig=None)
     Display the radial profile plot (intensity vs radius) for the object.
     From the parameters Dictionary: If pixel is True, then every pixel at each radius is plotted. If pixel is False,
     then the sum of all pixels at each radius is plotted.
     Background may be subtracted and centering can be done with a 2D Gaussian fit. These options are read
     from the plot parameters dict.
          Parameters
              x: int
                The x location of the object
              y: int
                The y location of the object
              data: numpy array
                The data array to work on
              form: string
                The string name of the form of the fit to use
              genplot: bool
                Generate the plot if True, else return the fit data
register(user_funcs)
```

13.1. Classes 137

register a new imexamine function made by the user as an option.

Parameters

user_funcs: dict

Contains a dictionary where each key is the binding for the (function, description) tuple

Notes

The new binding will be added to the dictionary of imexamine functions as long as the key is unique. The new functions do not have to have default dictionaries associated with them.

```
report_stat(x, y, data=None)
```

report the statistic of values in a box with side region_size.

The statistic can be any numpy function

Parameters

x: int

The x location of the object

y: int

The y location of the object

data: numpy array

The data array to work on

reset_defpars()

set all pars to their defaults.

```
save(filename=None, fig=None)
```

Save to file the figure that's currently displayed.

this is used for the standalone plotting

Parameters

filename: string

Name of the file the plot will be saved to. The extension on the filename determines the filetype

fig: figure name for redirect

Used for interaction with the ginga GUI

```
save_figure(x, y, data=None, fig=None)
```

Save to file the figure that's currently displayed.

this is used for the imexam loop, because there is a standard api for the loop

Parameters

x: int

The x location of the object

y: int

The y location of the object

data: numpy array

The data array to work on

fig: figure for redirect

Used for interaction with the ginga GUI

set_aper_phot_pars(user_dict=None)

the user may supply a dictionary of par settings.

set_colplot_pars()

set parameters for column plots.

set_column_fit_pars()

set parameters for 1D line fit plots.

set_contour_pars()

set parameters for contour plots.

set_curve_pars()

set parameters for curve of growth plots.

set_cutout_pars()

set parameters for cutout images.

set_data(data=array([], dtype=float64))

initialize the data that imexamine uses.

set_histogram_pars()

set parameters for histogram plots.

set_line_fit_pars()

set parameters for 1D line fit plots.

set_lineplot_pars()

set parameters for line plots.

set_option_funcs()

Define the dictionary which maps imexam keys to their functions.

Notes

The user can modify this dictionary to add or change options, the first item in the tuple is the associated function the second item in the tuple is the description of what the function does when that key is pressed

set_plot_name(filename=None)

set the default plot name for the "s" key.

Parameters

filename: string

The name which is used to save the current plotting window to a file The extension on the name decides which file type is used

set_radial_pars()

set parameters for radial profile plots.

set_surface_pars()

set parameters for surface plots.

setlog(filename=None, on=True, level=20)

Turn on and off logging to a logfile or the screen.

Parameters

filename: str, optional

Name of the output file to record log information

13.1. Classes 139

```
on: bool, optional
                True by default, turn the logging on or off
             level: logging class, optional
                set the level for logging messages, turn off screen messages by setting to log-
                ging.CRITICAL
show_fit_models()
     Print the available astropy models for plot fits.
show_xy_coords(x, y, data=None)
     print the x,y,value to the screen.
         Parameters
             x: int
                The x location of the object
             y: int
                The y location of the object
             data: numpy array
                The data array to work on
showplt()
     Show the plot.
surface(x, y, data=None, fig=None)
     plot a surface around the specified location.
         Parameters
             x: int
                The x location of the object
             y: int
                The y location of the object
             data: numpy array
                The data array to work on
             fig: figure for redirect
                Used for interaction with the ginga GUI
unlearn_all()
```

reset the default parameters for all functions.

CHAPTER 14

imexam.ds9_viewer Module

Licensed under a 3-clause BSD style license - see LICENSE.rst

This class supports communication with DS9 through the XPA

Some code in this class was adapted from pysao, which can be found at https://github.com/leejjoon/pysao. Specifically this package used the existing Cython implementation to the XPA and extended the calls to the other available XPA executables so that more functionality is added. The API information is available here:

http://hea-www.harvard.edu/RD/xpa/client.html#xpaopen

Using Cython will allow for broader development of the code and produce faster runtimes for large datasets with repeated calls to the display manager.

XPA is licensed under MIT, help can be found here: http://hea-www.cfa.harvard.edu/saord/xpa/help.html

The current XPA can be downloaded from here: http://hea-www.harvard.edu/saord/xpa/

14.1 Classes

ds9([target, path, wait_time, quit_ds9_on_del])	Control all interactions between the user and the DS9 win-
	dow.

14.1.1 ds9

class imexam.ds9_viewer.ds9(target='', path='', wait_time=5, quit_ds9_on_del=True)

Bases: object

Control all interactions between the user and the DS9 window.

The ds9() contructor takes a ds9 target as its main argument. If none is given, then a new window and process will be started.

DS9's xpa access points are documented in the reference manual, but the can also be returned to the user with a

call to xpaset.

http://hea-www.harvard.edu/saord/ds9/ref/xpa.html

Parameters

target: string, optional

the ds9 target name or id. If None or empty string, a new ds9 instance is created.

path: string, optional

path of the ds9. Used only if a new ds9 is requested.

wait_time : float, optional

waiting time before error is raised
quit_ds9_on_del : boolean, optional

If True, try to quit ds9 when this instance is deleted.

Attributes

wait_time:	The waiting time before error is raised
float	
path: string	The path to the DS9 executable
_xpa_name:	The value in XPA_METHOD, the name of the DS9 window
string	
_quit_ds9_on_d	eDetermine whether to quit ds9 when object goes out of scope.
boolean	
_ds9_unix_nam	e:The full path filename to the unix socket, only if unix sockets are being used with local
string	
	: whenever there are unix socket directories which need to be purged when the object goes
boolean	out of scope
_tmpd_name:	The full path name to the unix socket file on the local system
string	
_filename:	The name of the image that's currently loaded into DS9
string	
_ext: int	Extension of the current image that is loaded. If one extension of an MEF file is loaded
	this will be 1 regardless of the extension that was specified (because DS9 and the XPA
	now see it as a single image and header)
_extname:	If available, the EXTNAME of the MEF extension that is loaded, taken from the current
string	data header
_extver: int	If available, the EXTVER of the MEF extension that is loaded, taken from the current
	data header
_ds9_process:	Points to the ds9 process id on the system, returned by Popen, whenever this module
pointer	starts DS9
_mef_file:	The file is a multi-extension fits file
boolean	
_iscube:	The file is a multiextension fits file, and one of the extensions contains at least 1
bookean	additional extension (3D or more)
_numaxis: int	number of image planes, this is NAXIS
_naxis: tuple	specific image plane displayed, defaulted to 1 image plane, most relevant to cube fits files

starter.

Notes

I think this is a quirk in the XPA communication. The xpans, and XPA prefer to have all connections be of the same type. DS9 defaults to creating an INET connection. In some cases, if no IP address can be found for the computer, the startup can hang. In these cases, a local connection is preferred, which uses a unix filename for the socket.

The problem arises that if the user already has DS9 windows running, that were started by default, the name-server is only listening for the default socket type (inet) and not local. There are also cases where the machine running this code does not have xpa installed, so there is no xpans (nameserver) to run and keep track of the open connections. In that case, the user needs to provide this init with the name of the socket in their window (in XPA_METHOD) in order to create the connection.

Methods Summary

alignwcs([on])	align wcs.
blink([blink, interval])	Blink frames.
clear_contour()	clear contours from the screen.
close()	close the window and end connection.
cmap([color, load, invert, save, filename])	Set the color map table, using a defined list of options.
colorbar([on])	turn the colorbar on the bottom of the window on and
	off.
contour([on, construct])	show contours on the window.
contour_load(filename)	load a contour file into the window.
crosshair([x, y, coordsys, skyframe,])	Control the position of the crosshair in the current
	frame.
cursor([x, y])	move the cursor in the current frame to the specified im-
	age pixel.
disp_header()	Display the header of the current image to a DS9 win-
	dow.
embed()	Embed the viewer in a notebook.
frame([n])	convenience function to change or report frames.
get(param)	XPA get method to ds9 instance which returns received
	string.
get_data()	return a numpy array of the data displayed in the current
	frame.
<pre>get_filename()</pre>	return the filename currently on display.
<pre>get_frame_info()</pre>	return more explicit information about the data dis-
	played.
get_header([fitsobj])	Return the current fits header.
<pre>get_image()</pre>	return the full image object instead of just the data array.
<pre>get_slice_info()</pre>	return the slice tuple that is currently displayed.
<pre>get_viewer_info()</pre>	Return a dictionary of information.
grab()	Make a copy of the image view.
grid([on, param])	convenience to turn the grid on and off.
hideme()	lower the ds9 window.
iscube()	return whether a cube image is displayed in the current
	frame.
load_fits([fname, extver, mecube])	convenience function to load fits image to current frame.
load_mef_as_cube([filename])	Load a Mult-Extension-Fits image into one frame as an
	image cube.
	Continued on next page

Table 14.2 – continued from previous page

<pre>load_mef_as_multi([filename])</pre>	Load a Mult-Extension-Fits image into multiple frames.
load_region(filename)	Load regions from a file which uses ds9 standard for-
	matting.
load_rgb(red, green, blue[, scale, lockwcs])	load 3 images into an RGBimage frame.
make_region(infile[, labels, header,])	make an input reg file with [x,y,comment] to a DS9 reg
	file.
mark_region_from_array(input_points[,])	mark ds9 regions regions given an input list of tuples.
match([coordsys, frame, crop, fslice,])	match all other frames to the current frame.
nancolor([color])	set the not-a-number color, default is red.
panto_image(x, y)	convenience function to change to x,y physical image
	coordinates.
panto_wcs(x, y[, system])	pan to wcs location coordinates in image.
readcursor()	Returns the image coordinate postion and key pressed.
reopen()	Reopen a closed window.
rotate([value, to])	rotate the current frame (in degrees).
run_inet_ds9()	start a new ds9 window using an inet socket connection.
save_regions([filename])	save the regions in the current window to a DS9 style
	regions file.
save_rgb([filename])	save an rgbimage frame as an MEF fits file.
scale([scale])	The default zscale is the most widely used option.
set(param[, buf])	XPA set method to ds9 instance.
<pre>set_iraf_display()</pre>	Set the environemnt variable IMTDEV to the current
	display.
set_region([region_string])	display a region using the specifications in re-
	gion_string.
show_xpa_commands()	Print the available XPA commands.
showme()	raise the ds9 window.
showpix([close])	display the pixel value table, close window when done.
snapsave([filename, format, resolution])	Create a snap shot of the current window, save in speci-
	fied format.
valid_data_in_viewer()	return bool if valid file or array is loaded into the viewer.
view(img)	Display numpy image array to current frame.
zoom([par])	Zoom using the specified command.
zoomtofit()	Zoom to fit the image to the viewer.

Methods Documentation

alignwcs(on=True)
 align wcs.

Parameters on: bool

Align the images using the WCS in their headers

blink(*blink=True*, *interval=None*) Blink frames.

Parameters

blink: bool, optional

Set to True to start blinking the frames which are open

interval: int

Set interval equal to the length of pause for blinking

Notes

```
blink syntax=
         Syntax: blink [truelfalse] [interval <value>]
clear_contour()
     clear contours from the screen.
close()
     close the window and end connection.
cmap(color=None, load=None, invert=False, save=False, filename='colormap.ds9')
     Set the color map table, using a defined list of options.
         Parameters
              color: string
                color must be set to one of the available DS9 color map names
              load: string, optional
                set to the filename which is a valid colormap lookup table valid contrast values are from
                0 to 10, and valid bias values are from 0 to 1
              invert: bool, optional
                invert the colormap
              save: bool, optional
                save the current colormap as a file
              filename: string, optional
                the name of the file to save the colormap to
colorbar(on=True)
     turn the colorbar on the bottom of the window on and off.
         Parameters
              on: bool
                Set to True to turn on the colorbar, False to turn it off
contour(on=True, construct=True)
     show contours on the window.
         Parameters
              on: bool
                Set to true to turn on contours
              construct: bool, optional
                Will open the contour dialog box which has more options
contour_load(filename)
     load a contour file into the window.
         Parameters
              filename: string
```

The name of the file with the contour level defined

Control the position of the crosshair in the current frame.

crosshair mode is turned on automatically

Parameters

x: string or int

The value of x is converted to a string for the call to XPA, use a value here appropriate for the skyformat you choose

y: string or int

The value of y is converted to a string for the call to XPA, use a value here appropriate for the skyformat you choose

coordsys: string, optional

The coordinate system your x and y are defined in

skyframe: string, optional

If skyframe has "wcs" in it then skyformat is also sent to the XPA

skyformat: string, optional

Used with skyframe, specifies the format of the coordinate which were given in x and y

match: bool, optional

If set to True, then the wcs is matched for the frames

lock: bool, optional

If set to True, then the frame is locked in wcs

```
cursor(x=None, y=None)
```

move the cursor in the current frame to the specified image pixel.

selected regions will also be moved

Parameters

x: int

pixel location x coordinate to move to

y: int

pixel location y coordinate to move to

x and y are converted to strings for the call

disp_header()

Display the header of the current image to a DS9 window.

embed()

Embed the viewer in a notebook.

frame(n=None)

convenience function to change or report frames.

Parameters

n: int, string, optional

The frame number to open or change to. If the number specified doesn't exist, a new frame will be opened If nothing is specified, then the current frame number will be returned. The value of n is converted to a string before passing to the XPA

Examples

frame(1) sets the current frame to 1 frame("last") set the current frame to the last frame frame() returns the number of the current frame frame("new") opens a new frame frame(3) opens frame 3 if it doesn't exist already, otherwise goes to frame 3

get(param)

XPA get method to ds9 instance which returns received string.

Parameters

param: parameter string (eg. "fits" "regions")

Notes

This function is linked with the Cython implementation get(param)

get_data()

return a numpy array of the data displayed in the current frame.

Notes

This is the data array that the imexam() function from connect() uses for analysis

astropy.io.fits stores data in row-major format. So a 4d image would be [NAXIS4, NAXIS3, NAXIS2, NAXIS1] just the one image is retured in the case of multidimensional data, not the cube

get_filename()

return the filename currently on display.

This function will check if there is already a filename saved. It's possible that the user can connect to a ds9 window with no file loaded and then ask for the data file name after loading one through the ds9 menu options. This will poll the private filename and then try and set one if it's empty.

get_frame_info()

return more explicit information about the data displayed.

get_header(fitsobj=False)

Return the current fits header.

The return value is the string or None if there's a problem If fits is True then a fits header object is returned instead

get_image()

return the full image object instead of just the data array.

get_slice_info()

return the slice tuple that is currently displayed.

get_viewer_info()

Return a dictionary of information.

The dictionary contains information about all frames which are loaded with data

Notes

Consider adding a loop to verify that all the frames still exist and the user has not deleted any through the gui.

grab()

Make a copy of the image view.

grid(on=True, param=False)

convenience to turn the grid on and off.

grid can be flushed with many more options

Parameters

on: bool, optional

Will turn the grid overlay on in the current frame

param: bool, optional

Will open the parameter dialog in DS9

hideme()

lower the ds9 window.

iscube()

return whether a cube image is displayed in the current frame.

load_fits(fname=None, extver=None, mecube=False)

convenience function to load fits image to current frame.

Parameters

fname: string, optional

The name of the file to be loaded. You can specify the full extension in the name, such as filename_flt.fits or filename_flt.fits[1]

extver: int, optional

The extension to load (EXTVER in the header)

mecube: bool, optional

If mecube is True, load the fits file as a cube into ds9

Notes

To tell ds9 to open a file whose name or path includes spaces, surround the path with "{...}", e.g.

```
% xpaset -p ds9 file "{foo bar/my image.fits}"
```

This is assuming that the image loads into the current or next new frame, watch the internal file and ext values because the user can switch frames through DS9 app itself

XPA needs to have the absolute path to the filename so that if the DS9 window was started in another directory it can still find the file to load.

load_mef_as_cube(filename=None)

Load a Mult-Extension-Fits image into one frame as an image cube.

load_mef_as_multi(filename=None)

Load a Mult-Extension-Fits image into multiple frames.

```
load_region(filename)
     Load regions from a file which uses ds9 standard formatting.
          Parameters
              filename: string
                The file containing the DS9 style region description
load_rgb(red, green, blue, scale=False, lockwcs=False)
     load 3 images into an RGBimage frame.
          Parameters
              red: string
                The name of the fits file loaded into the red channel
              green: string
                The name of the fits file loaded into the green channel
              blue: string
                The name of the fits file loaded into the blue channel
              scale: bool
                If True, then each image will be scaled with zscale() after loading
              lockwcs: bool
                If True, then the image positions will be locked to each other using the WCS information
                in their headers
make_region(infile, labels=False, header=0, textoff=10, size=5)
     make an input reg file with [x,y,comment] to a DS9 reg file.
     the input file should contain lines specifying x,y,comment
          Parameters
              infile: str
                input filename
              labels: bool
                add labels to the regions
              header: int
                number of header lines in text file to skip
              textoff: int
                offset in pixels for labels
              size: int
                size of the region type
     Notes
     only circular regions are supported currently
mark_region_from_array(input_points, ptype='image', textoff=10, size=4)
     mark ds9 regions regions given an input list of tuples.
```

a convienence function, you can also use set_region

Parameters

input_points: iterator, a tuple, or list of tuples

or a string: (x,y,comment),

ptype: string

the reference system for the point locations, imagelphysicallfk5

size: int

the size of the region marker

textoff: string

the offset for the comment text, if comment is empty it will not show

Notes

only circular regions are supported currently

Parameters

coordsys: string, optional

The coordinate system to use

frame: bool, optional

Match all other frames to the current frame, using the set coordsys

crop: bool, optional

Set the current image display area, using the set coordsys

fslice: bool, optional

Match current slice in all frames

scale: bool, optional

Match to the current scale for all frames

bin: bool, optional

Match to the current binning for all frames

colorbar: bool, optional

Match to the current colorbar for all frames

smooth: bool, optional

Match to the current smoothing for all frames

crosshair: bool, optional

Match the crosshair in all frames, using the current coordsys

Notes

You can only choose one of the options at a time, and the logic will select the first True option so set frame=False and something else in addition to your choice if you don't want the default option.

```
nancolor(color='red')
```

set the not-a-number color, default is red.

Parameters

color: string

The color to use for NAN pixels

$panto_image(x, y)$

convenience function to change to x,y physical image coordinates.

Parameters

x: float

X location in physical coords to pan to

y: float

Y location in physical coords to pan to

$panto_wcs(x, y, system = 'fk5')$

pan to wcs location coordinates in image.

Parameters

x: string

The x location to move to, specified using the given system

y: string

The y location to move to

system: string

The reference system that x and y were specified in, they should be understood by DS9

readcursor()

Returns the image coordinate postion and key pressed.

Notes

XPA returns strings of the form: u a 257.5 239

reopen()

Reopen a closed window.

```
rotate(value=None, to=False)
```

rotate the current frame (in degrees).

the current rotation is printed with no params

Parameters

value: float [degrees]

Rotate the current frame {value} degrees If value is 0, then the current rotation is printed

to: bool

Rotate the current frame to the specified value

run_inet_ds9()

start a new ds9 window using an inet socket connection.

Notes

It is given a unique title so it can be identified later.

save_regions(filename=None)

save the regions in the current window to a DS9 style regions file.

Parameters

filename: string

The name of th file to which the regions displayed in the current window are saved. If no filename is provided then it will try and save the regions to the name of the file in the current display with _regions.txt appended

If a file of that name already exists on disk it will no attempt to overwrite it

save_rgb(filename=None)

save an rgbimage frame as an MEF fits file.

Parameters

filename: string

The name of the output fits image

```
scale(scale='zscale')
```

The default zscale is the most widely used option.

Parameters

scale: string

The scale for ds9 to use, these are set strings of [linearlloglpowlsqrtlsquaredlasinhlsinhlhistequ]

Notes

The xpa doesn't return an error if you set an unknown scale, it just doesn't do anything, this is true for all the xpa calls

```
set(param, buf=None)
```

XPA set method to ds9 instance.

Notes

This function is linked with the Cython implementation

set(param, buf=None) param: parameter string (eg. "fits" "regions") buf: aux data string (sometime string needed to be ended with CR)

set_iraf_display()

Set the environemnt variable IMTDEV to the current display.

the socket address of the current imexam.ds9 instance is used Notes — For example, your pyraf commands will use this ds9 for display.

TODO: Not sure this is still needed. Stop using IRAF.

```
set_region(region string='')
```

display a region using the specifications in region_string.

Parameters

region_string: string

Should take the form of a region string that DS9 is expecting

Examples

set_region("physical ruler 200 300 200 400") set_region("line 0 400 3 400 #color=red")

show_xpa_commands()

Print the available XPA commands.

showme()

raise the ds9 window.

showpix(close=False)

display the pixel value table, close window when done.

Parameters

close: bool, optional

If set to True, then the pixel table dialog window is closed

```
snapsave(filename=None, format=None, resolution=100)
```

Create a snap shot of the current window, save in specified format.

This function bypasses the XPA calling routines to avoid a bug with the X11/XPA interface. Instead is uses the os import function which takes a snapshot of the specified x11 window.

Parameters

filename: str, optional

filename of output image, the extension in the filename can also be used to specify the format. If no filename is specified, then the filename will be constructed from the name of the image displayed image with _snap.png appended.

format: str, optional

available formats are fits, eps, gif, tiff, jpeg, png If no format is specified the filename extension is used

resolution: int, optional

1 to 100, for jpeg images

valid_data_in_viewer()

return bool if valid file or array is loaded into the viewer.

view(img)

Display numpy image array to current frame.

Parameters

img: numpy array

The array containing data, it will be forced to numpy.array()

zoom(par='to fit')

Zoom using the specified command.

Parameters

par: string

- it can be a number (ranging 0 to 8 effectively), and successive calls continue zooming in the same direction
- it can be two numbers '42', which specify zoom on different axis
- if can be to a specific value 'to 8' or 'to fit'
- it can be 'open' to open the dialog box
- it can be 'close' to close the dialog box (only valid if the box is already open)

Examples

zoom('0.1')

zoomtofit()

Zoom to fit the image to the viewer.

CHAPTER 15

imexam.ginga_viewer Module

Licensed under a 3-clause BSD style license - see LICENSE.rst

This class supports communication with a Ginga-based viewer. For default key and mouse shortcuts in a Ginga window, see: https://ginga.readthedocs.org/en/latest/quickref.html

15.1 Classes

ginga([exam, close_on_del, logger, port,])	A ginga-based viewer that displays to an HTML5 widget in a browser.
ginga_general([exam, close_on_del, logger, port])	A base class which controls all interactions between the user and the ginga widget.

15.1.1 ginga

A ginga-based viewer that displays to an HTML5 widget in a browser.

This is compatible with the Jupyter notebook and can be run from a server.

This kind of viewer has slower performance than if we choose some widget back ends, but the advantage is that it works so long as the user has a working browser.

All the rendering is done on the server side and the browser only acts as a display front end. Using this you could create an analysis type environment on a server and view it via a browser or from a Jupyter notebook.

Methods Summary

close()	Close the viewing window.
reopen()	Reopen the viewer window if the user closes it acciden-
	tally.

Methods Documentation

close()

Close the viewing window.

reopen()

Reopen the viewer window if the user closes it accidentally.

15.1.2 ginga general

class imexam.ginga_viewer.ginga_general(exam=None, close_on_del=True, logger=None, port=None)
 Bases: object

A base class which controls all interactions between the user and the ginga widget.

The ginga contructor creates a new window using the ginga backend.

Parameters

close_on_del: boolean, optional

If True, try to close the window when this instance is deleted.

Attributes

view: Ginga view object	The object instantiated from a Ginga view class
exam: imexamine object	

initialize a general ginga viewer object.

Parameters

exam: imexam object

This is the imexamine object which contains the examination functions

close_on_del: bool

If True, the window connection shuts down when the object is deleted

logger: logger object

Ginga viewers all need a logger, if none is provided it will create one

port: int

This is used as the communication port for the HTML5 viewer. The user can choose to have multiple windows open at the same time as long as they have different port designations. If no port is specified, this class will choose an open port.

Methods Summary

blink()	Blink multiple frames.	
		Continued on next page

Table 15.3 – continued from previous page

	tinued from previous page
close()	Close the window.
<pre>cmap([color, load, invert, save, filename])</pre>	Set the color map table to something else, using a de-
	fined list of options.
contour_load()	Load a file with contour information.
crosshair(**kwargs)	Control the current position of the crosshair in the
	frame.
cursor(**kwargs)	Move the cursor in the current frame to the specified
	image pixel.
disp_header()	Display the fits header for the current data.
embed([width, height])	Embed the current window into the notebook.
frame()	Convenience function to report frames.
<pre>get_data()</pre>	Return a numpy array of the data displayed in the cur-
	rent frame
<pre>get_filename()</pre>	Return the filename currently associated with the data
<pre>get_frame_info()</pre>	Return more explicit information about the data in cur-
	rent frame.
<pre>get_header()</pre>	Return current fits header as string, None if there's a
	problem.
<pre>get_image()</pre>	Return the AstroImage instance for the data in the
	viewer
<pre>get_slice_info()</pre>	Return the slice tuple that is currently displayed.
<pre>get_viewer_info()</pre>	Return a dictionary of information about all frames with
	data
grab()	
grid(*args, **kwargs)	Turn the grid display on and off.
hideme()	Lower the display window in prededence.
iscube()	Return whether a cube image is displayed in the current
	frame.
load_fits([fname, extver])	Load fits image to current frame.
load_mef_as_cube(*args, **kwargs)	Load a Mult-Extension-Fits image one frame as a cube.
<pre>load_mef_as_multi(*args, **kwargs)</pre>	Load a Mult-Extension-Fits image into multiple frames.
load_region(*args, **kwargs)	Load regions from a file which uses standard formatting.
load_rgb(*args, **kwargs)	Load three images into a frame, each one for a different
	color.
<pre>make_region(*args, **kwargs)</pre>	make an input reg file with [x,y,comment] to a standard
	reg file.
<pre>mark_region_from_array(*args, **kwargs)</pre>	Mark regions on the viewer with a list of tuples as input.
match(**kwargs)	Match all other frames to the current frame.
nancolor(**kwargs)	Set the not-a-number (Nan) color.
panto_image(x, y)	Change to x,y physical image coordinates.
panto_wcs(x, y[, system])	Pan to wcs location coordinates in image
readcursor()	Returns image coordinate postion and key pressed.
rotate([value])	Rotate the current frame (in degrees).
save_header(*args, **kwargs)	Save the header of the current image to a file.
save_regions(*args, **kwargs)	Save the displayed regions on the current window to a
	file.
save_rgb(*args, **kwargs)	Save an rgb image frame that is displayed as an MEF
	fits file.
scale([scale])	Scale the image intensity, zscale is used as the default.

Table 15.3 – continued from previous page

	1 1 5
set_region(*args, **kwargs)	Display a region using the specifications in re-
	gion_string.
show_window_commands()	Print the available commands for the selected display.
showme()	Raise the precendence of the display window.
showpix(*args, **kwargs)	Display the pixel value table, closing the window when
	done.
snapsave()	Save a frame display as a PNG file.
start_event_loop()	
transform([flipx, flipy, swapxy])	Transform the frame.
valid_data_in_viewer()	Return bool if a valid file or array is loaded into the
	viewer
view(img)	Display numpy image array in current frame
zoom(zoomlevel)	Zoom the image using the specified zoomlevel.
zoomtofit()	Zoom the image to fit the display.

Methods Documentation

blink()

Blink multiple frames.

close()

Close the window.

cmap(*color=None*, *load=None*, *invert=False*, *save=False*, *filename='colormap.ds9'*)

Set the color map table to something else, using a defined list of options.

Parameters

color: string

color must be set to one of the available color map names

load: string, optional

set to the filename which is a valid colormap lookup table valid contrast values are from 0 to 10, and valid bias values are from 0 to 1

invert: bool, optional

invert the colormap

save: bool, optional

save the current colormap as a file

filename: string, optional

the name of the file to save the colormap to

contour_load()

Load a file with contour information.

crosshair(**kwargs)

Control the current position of the crosshair in the frame.

crosshair mode is turned on.

cursor(**kwargs)

Move the cursor in the current frame to the specified image pixel.

it will also move selected regions

```
disp_header()
     Display the fits header for the current data.
embed(width=600, height=650)
     Embed the current window into the notebook.
frame()
     Convenience function to report frames.
     currently only 1 frame is supported per calling object in HTML5 display
get_data()
     Return a numpy array of the data displayed in the current frame
     Notes
     This is the data array that the imexam() function from connect() uses for analysis
     astropy.io.fits stores data in row-major format. So a 4d image would be [NAXIS4, NAXIS3, NAXIS2,
     NAXIS1] just the one image is retured in the case of multidimensional data, not the cube
get_filename()
     Return the filename currently associated with the data
get_frame_info()
     Return more explicit information about the data in current frame.
get_header()
     Return current fits header as string, None if there's a problem.
get_image()
     Return the AstroImage instance for the data in the viewer
get_slice_info()
     Return the slice tuple that is currently displayed.
get_viewer_info()
     Return a dictionary of information about all frames with data
grab()
grid(*args, **kwargs)
     Turn the grid display on and off.
     grid can be flushed with many more options
hideme()
     Lower the display window in prededence.
iscube()
     Return whether a cube image is displayed in the current frame.
load_fits(fname='', extver=None)
     Load fits image to current frame.
         Parameters
```

as filename_flt.fits[sci,1] or filename_flt.fits[1]

The name of the file to be loaded. You can specify the full extension in the name, such

extver: int, optional

fname: string, optional

The extension to load (EXTVER in the header)

Notes

Extname isn't used here, ginga wants the absolute extension number, not the version number associated with a name

```
load_mef_as_cube(*args, **kwargs)
```

Load a Mult-Extension-Fits image one frame as a cube.

load_mef_as_multi(*args, **kwargs)

Load a Mult-Extension-Fits image into multiple frames.

load_region(*args, **kwargs)

Load regions from a file which uses standard formatting.

load_rgb(*args, **kwargs)

Load three images into a frame, each one for a different color.

make_region(*args, **kwargs)

make an input reg file with [x,y,comment] to a standard reg file.

the input file should contains lines with x,y,comment

mark_region_from_array(*args, **kwargs)

Mark regions on the viewer with a list of tuples as input.

match(**kwargs)

Match all other frames to the current frame.

nancolor(**kwargs)

Set the not-a-number (Nan) color.

$panto_image(x, y)$

Change to x,y physical image coordinates.

Parameters

x: float

X location in physical coords to pan to

y: float

Y location in physical coords to pan to

$panto_wcs(x, y, system='fk5')$

Pan to wcs location coordinates in image

Parameters

x: string

The x location to move to, specified using the given system

y: string

The y location to move to

system: string

The reference system that x and y were specified in, they should be understood by DS9

readcursor()

Returns image coordinate postion and key pressed.

```
rotate(value=None)
     Rotate the current frame (in degrees).
     the current rotation is printed with no params
         Parameters
             value: float [degrees]
                Rotate the current frame {value} degrees If value is None, then the current rotation is
                printed
save_header(*args, **kwargs)
     Save the header of the current image to a file.
save_regions(*args, **kwargs)
     Save the displayed regions on the current window to a file.
save_rgb(*args, **kwargs)
     Save an rgb image frame that is displayed as an MEF fits file.
scale(scale='zscale')
     Scale the image intensity, zscale is used as the default.
         Parameters
             scale: string
                       scale
                                for
                                      ds9
                                             to
                                                           these
                                                                                                [lin-
                                                   use,
                                                                    are
                                                                          set
                                                                                strings
                                                                                           of
                earlloglpowlsqrtlsquaredlasinhlsinhlhistequ]
set_region(*args, **kwargs)
     Display a region using the specifications in region_string.
show_window_commands()
     Print the available commands for the selected display.
showme()
     Raise the precendence of the display window.
showpix(*args, **kwargs)
     Display the pixel value table, closing the window when done.
snapsave()
     Save a frame display as a PNG file.
         Parameters
             filename: string
                The name of the output PNG image
start_event_loop()
transform(flipx=None, flipy=None, swapxy=None)
     Transform the frame.
         Parameters
             flipx: boolean
                if True flip the X axis, if False don't, if None leave current
              flipy: boolean
                if True flip the Y axis, if False don't, if None leave current
             swapxy: boolean
```

if True swap the X and Y axes, if False don't, if None leave current

valid_data_in_viewer()

Return bool if a valid file or array is loaded into the viewer

view(img)

Display numpy image array in current frame

Parameters

img: numpy array

The array containing data, it will be forced to numpy.array()

Examples

view(np.random.rand(100,100))

zoom(zoomlevel)

Zoom the image using the specified zoomlevel.

Parameters

zoomlevel: integer

Examples

zoom(6) zoom(-3)

zoomtofit()

Zoom the image to fit the display.

Python Module Index

```
imexam.connect, 123
imexam.ds9_viewer, 141
imexam.ginga_viewer, 155
imexam.imexamine, 131
```

164 Python Module Index

aimexam() (imexam.connect.Connect method), 125 alignwcs() (imexam.connect.Connect method), 126 alignwcs() (imexam.ds9_viewer.ds9 method), 144 aper_phot() (imexam.imexamine.Imexamine method), 133 B blink() (imexam.connect.Connect method), 126 blink() (imexam.ds9_viewer.ds9 method), 144 blink() (imexam.ginga_viewer.ginga_general method), 158 C cimexam() (imexam.connect.Connect method), 126 clear_contour() (imexam.connect.Connect method), 126	crosshair() (imexam.connect.Connect method), 126 crosshair() (imexam.ds9_viewer.ds9 method), 146 crosshair() (imexam.ginga_viewer.ginga_general
clear_contour() (imexam.ds9_viewer.ds9 method), 145 close() (imexam.connect.Connect method), 126 close() (imexam.ds9_viewer.ds9 method), 145 close() (imexam.ginga_viewer.ginga method), 156 close() (imexam.ginga_viewer.ginga_general method), 158 close() (imexam.imexamine.Imexamine method), 133 cmap() (imexam.connect.Connect method), 126 cmap() (imexam.ds9_viewer.ds9 method), 145 cmap() (imexam.ginga_viewer.ginga_general method), 158	method), 158 do_option() (imexam.imexamine.Imexamine method), 134 ds9 (class in imexam.ds9_viewer), 141 E eimexam() (imexam.connect.Connect method), 126 embed() (imexam.connect.Connect method), 126 embed() (imexam.ds9_viewer.ds9 method), 146 embed() (imexam.ginga_viewer.ginga_general method), 159
colorbar() (imexam.connect.Connect method), 126 colorbar() (imexam.ds9_viewer.ds9 method), 145 column_fit() (imexam.imexamine.Imexamine method),	F frame() (imexam.connect.Connect method), 126 frame() (imexam.ds9_viewer.ds9 method), 146 frame() (imexam.ginga_viewer.ginga_general method), 159 G gauss_center() (imexam.imexamine.Imexamine method), 135 get() (imexam.ds9_viewer.ds9 method), 147 get_data() (imexam.connect.Connect method), 126

get_data() (imexam.ds9_viewer.ds9 method), 147 get_data() (imexam.ginga_viewer.ginga_general	imexam() (imexam.connect.Connect method), 127 imexam.connect (module), 123 imexam.ds9_viewer (module), 141 imexam.ginga_viewer (module), 155 imexam.imexamine (module), 131 Imexamine (class in imexam.imexamine), 131 iscube() (imexam.ds9_viewer.ds9 method), 148 iscube() (imexam.ginga_viewer.ginga_general method), 159 J jimexam() (imexam.connect.Connect method), 127
get_header() (imexam.ds9_viewer.ds9 method), 147	K
get_header() (imexam.ginga_viewer.ginga_general method), 159	
get_image() (imexam.connect.Connect method), 127	kimexam() (imexam.connect.Connect method), 127
get_image() (imexam.ds9_viewer.ds9 method), 147	L
get_image() (imexam.ginga_viewer.ginga_general	limexam() (imexam.connect.Connect method), 127
method), 159 get_options() (imexam.imexamine.Imexamine method),	line_fit() (imexam.imexamine.Imexamine method), 135
135	load_fits() (imexam.connect.Connect method), 127 load_fits() (imexam.ds9_viewer.ds9 method), 148
get_plot_name() (imexam.imexamine.Imexamine	load_fits() (imexam.ginga_viewer.ginga_general
method), 135	method), 159
get_slice_info() (imexam.ds9_viewer.ds9 method), 147 get_slice_info() (imexam.ginga_viewer.ginga_general	load_mef_as_cube() (imexam.connect.Connect method),
method), 159	127
get_viewer_info() (imexam.connect.Connect method), 127	load_mef_as_cube() (imexam.ds9_viewer.ds9 method), 148 load_mef_as_cube() (imexam.ginga_viewer.ginga_general
get_viewer_info() (imexam.ds9_viewer.ds9 method), 147	method), 160
get_viewer_info() (imexam.ginga_viewer.ginga_general method), 159	load_mef_as_multi() (imexam.connect.Connect method), 127
gimexam() (imexam.connect.Connect method), 127 ginga (class in imexam.ginga_viewer), 155	load_mef_as_multi() (imexam.ds9_viewer.ds9 method), 148
ginga_general (class in imexam.ginga_viewer), 156 grab() (imexam.connect.Connect method), 127	load_mef_as_multi() (imexam.ginga_viewer.ginga_general method), 160
grab() (imexam.ds9_viewer.ds9 method), 148	load_region() (imexam.connect.Connect method), 127
grab() (imexam.ginga_viewer.ginga_general method), 159	load_region() (imexam.ds9_viewer.ds9 method), 148 load_region() (imexam.ginga_viewer.ginga_general
grid() (imexam.connect.Connect method), 127	method), 160
grid() (imexam.ds9_viewer.ds9 method), 148 grid() (imexam.ginga_viewer.ginga_general method), 159	load_rgb() (imexam.connect.Connect method), 128 load_rgb() (imexam.ds9_viewer.ds9 method), 149 load_rgb() (imexam.ginga_viewer.ginga_general
Н	load_rgb() (imexam.ginga_viewer.ginga_general method), 160
hideme() (imexam.connect.Connect method), 127	M
hideme() (imexam.ds9_viewer.ds9 method), 148 hideme() (imexam.ginga_viewer.ginga_general method), 159 himexam() (imexam.connect.Connect method), 127	make_region() (imexam.connect.Connect method), 128 make_region() (imexam.ds9_viewer.ds9 method), 149 make_region() (imexam.ginga_viewer.ginga_general method), 160
histogram() (imexam.imexamine.Imexamine method), 135	mark_region_from_array() (imexam.connect.Connect method), 128
	mark_region_from_array() (imexam.ds9_viewer.ds9 method), 149

mark_region_from_array() (imexam.ginga_viewer.ginga_general method), 160	rotate() (imexam.ds9_viewer.ds9 method), 151 rotate() (imexam.ginga_viewer.ginga_general method), 160
match() (imexam.connect.Connect method), 128 match() (imexam.ds9_viewer.ds9 method), 150	run_inet_ds9() (imexam.ds9_viewer.ds9 method), 151
match() (imexam.ginga_viewer.ginga_general method),	S
160 mimexam() (imexam.connect.Connect method), 128	save() (imexam.imexamine.Imexamine method), 138 save_figure() (imexam.imexamine.Imexamine method),
N	138
nancolor() (imexam.connect.Connect method), 128 nancolor() (imexam.ds9_viewer.ds9 method), 151	save_header() (imexam.connect.Connect method), 128 save_header() (imexam.ginga_viewer.ginga_general method), 161
nancolor() (imexam.ginga_viewer.ginga_general method), 160	save_regions() (imexam.connect.Connect method), 128 save_regions() (imexam.ds9_viewer.ds9 method), 152
new_plot_window() (imexam.imexamine.Imexamine method), 136	save_regions() (imexam.ginga_viewer.ginga_general method), 161
0	save_rgb() (imexam.connect.Connect method), 128
	save_rgb() (imexam.ds9_viewer.ds9 method), 152 save_rgb() (imexam.ginga_viewer.ginga_general
option_descrip() (imexam.imexamine.Imexamine method), 136	method), 161
	scale() (imexam.connect.Connect method), 128
P	scale() (imexam.ds9_viewer.ds9 method), 152
panto_image() (imexam.connect.Connect method), 128 panto_image() (imexam.ds9_viewer.ds9 method), 151	scale() (imexam.ginga_viewer.ginga_general method), 161
panto_image() (imexam.ginga_viewer.ginga_general	set() (imexam.ds9_viewer.ds9 method), 152
method), 160	set_aper_phot_pars() (imexam.imexamine.Imexamine
panto_wcs() (imexam.connect.Connect method), 128	method), 139
panto_wcs() (imexam.ds9_viewer.ds9 method), 151	set_colplot_pars() (imexam.imexamine.Imexamine method), 139
panto_wcs() (imexam.ginga_viewer.ginga_general	set_column_fit_pars() (imexam.imexamine.Imexamine
method), 160 plot_column() (imexam.imexamine.Imexamine method),	method), 139
136	set_contour_pars() (imexam.imexamine.Imexamine
plot_line() (imexam.imexamine.Imexamine method), 137	method), 139
plotname() (imexam.connect.Connect method), 128	set_curve_pars() (imexam.imexamine.Imexamine
<pre>print_options() (imexam.imexamine.Imexamine method),</pre>	method), 139
137	set_cutout_pars() (imexam.imexamine.Imexamine method), 139
R	set_data() (imexam.imexamine.Imexamine method), 139
radial_profile() (imexam.imexamine.Imexamine method),	set_histogram_pars() (imexam.imexamine.Imexamine method), 139
readcursor() (imexam.connect.Connect method), 128	set_iraf_display() (imexam.ds9_viewer.ds9 method), 152
readcursor() (imexam.connect.Connect method), 128	set_line_fit_pars() (imexam.imexamine.Imexamine
readcursor() (imexam.ginga_viewer.ginga_general	method), 139
method), 160	set_lineplot_pars() (imexam.imexamine.Imexamine
register() (imexam.imexamine.Imexamine method), 137	method), 139
reopen() (imexam.connect.Connect method), 128	set_option_funcs() (imexam.imexamine.Imexamine
reopen() (imexam.ds9_viewer.ds9 method), 151	method), 139 set_plot_name() (imexam.imexamine.Imexamine
reopen() (imexam.ginga_viewer.ginga method), 156	method), 139
report_stat() (imexam.imexamine.Imexamine method), 138	set_plot_pars() (imexam.connect.Connect method), 129
reset_defpars() (imexam.imexamine.Imexamine method),	set_radial_pars() (imexam.imexamine.Imexamine method), 139
rimexam() (imexam.connect.Connect method), 128	set_region() (imexam.connect.Connect method), 129
rotate() (imexam.connect.Connect method), 128	set_region() (imexam.ds9_viewer.ds9 method), 152

```
view() (imexam.ginga viewer.ginga general method),
set region()
                  (imexam.ginga viewer.ginga general
         method), 161
                      (imexam.imexamine.Imexamine
set surface pars()
                                                      W
         method), 139
setlog() (imexam.connect.Connect method), 129
                                                      wimexam() (imexam.connect.Connect method), 130
setlog() (imexam.imexamine.Imexamine method), 139
                                                      Ζ
show fit models()
                      (imexam.imexamine.Imexamine
         method), 140
                                                      zoom() (imexam.connect.Connect method), 130
show window commands()
                            (imexam.connect.Connect
                                                      zoom() (imexam.ds9_viewer.ds9 method), 153
         method), 129
                                                      zoom() (imexam.ginga_viewer.ginga_general method),
show_window_commands()
         (imexam.ginga_viewer.ginga_general method),
                                                      zoomtofit() (imexam.connect.Connect method), 130
                                                      zoomtofit() (imexam.ds9 viewer.ds9 method), 154
                             (imexam.ds9_viewer.ds9
show_xpa_commands()
                                                      zoomtofit()
                                                                        (imexam.ginga_viewer.ginga_general
         method), 153
                                                               method), 162
show_xy_coords()
                      (imexam.imexamine.Imexamine
         method), 140
showme() (imexam.connect.Connect method), 129
showme() (imexam.ds9 viewer.ds9 method), 153
                 (imexam.ginga viewer.ginga general
         method), 161
showpix() (imexam.connect.Connect method), 129
showpix() (imexam.ds9_viewer.ds9 method), 153
showpix()
                  (imexam.ginga viewer.ginga general
         method), 161
showplt() (imexam.imexamine.Imexamine method), 140
snapsave() (imexam.connect.Connect method), 129
snapsave() (imexam.ds9_viewer.ds9 method), 153
snapsave()
                 (imexam.ginga_viewer.ginga_general
         method), 161
start_event_loop() (imexam.ginga_viewer.ginga_general
         method), 161
surface() (imexam.imexamine.Imexamine method), 140
Т
timexam() (imexam.connect.Connect method), 129
transform()
                  (imexam.ginga_viewer.ginga_general
         method), 161
U
unlearn() (imexam.connect.Connect method), 130
unlearn all() (imexam.imexamine.Imexamine method),
         140
valid_data_in_viewer()
                            (imexam.connect.Connect
         method), 130
valid_data_in_viewer()
                             (imexam.ds9_viewer.ds9
         method), 153
valid_data_in_viewer() (imexam.ginga_viewer.ginga_general
         method), 162
view() (imexam.connect.Connect method), 130
view() (imexam.ds9_viewer.ds9 method), 153
```